Robust manipulation of superconducting qubits in the presence of fluctuations

被引:0
|
作者
Daoyi Dong
Chunlin Chen
Bo Qi
Ian R. Petersen
Franco Nori
机构
[1] School of Engineering and Information Technology,Department of Control and System Engineering
[2] University of New South Wales,Key Laboratory of Systems and Control
[3] School of Management and Engineering,Physics Department
[4] Nanjing University,undefined
[5] ISS and National Center for Mathematics and Interdis-ciplinary Sciences,undefined
[6] Academy of Mathematics and Systems Science,undefined
[7] CEMS,undefined
[8] RIKEN,undefined
[9] The University of Michigan,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Superconducting quantum systems are promising candidates for quantum information processing due to their scalability and design flexibility. However, the existence of defects, fluctuations and inaccuracies is unavoidable for practical superconducting quantum circuits. In this paper, a sampling-based learning control (SLC) method is used to guide the design of control fields for manipulating superconducting quantum systems. Numerical results for one-qubit systems and coupled two-qubit systems show that the “smart” fields learned using the SLC method can achieve robust manipulation of superconducting qubits, even in the presence of large fluctuations and inaccuracies.
引用
收藏
相关论文
共 50 条
  • [41] Tunable coupling of superconducting qubits
    Blais, A
    van den Brink, AM
    Zagoskin, AM
    PHYSICAL REVIEW LETTERS, 2003, 90 (12)
  • [42] Superconducting qubits II: Decoherence
    Wilhelm, F. K.
    Storcz, M. J.
    Hartmann, U.
    Geller, Michael R.
    MANIPULATING QUANTUM COHERENCE IN SOLID STATE SYSTEMS, 2007, 244 : 195 - +
  • [43] Relativistic motion with superconducting qubits
    Felicetti, S.
    Sabin, C.
    Fuentes, I.
    Lamata, L.
    Romero, G.
    Solano, E.
    PHYSICAL REVIEW B, 2015, 92 (06):
  • [44] Ruthenates: simple superconducting qubits
    Gulian, AM
    Wood, KS
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2004, 408 : 923 - 925
  • [45] Decoherence benchmarking of superconducting qubits
    Burnett, Jonathan J.
    Bengtsson, Andreas
    Scigliuzzo, Marco
    Niepce, David
    Kudra, Marina
    Delsing, Per
    Bylander, Jonas
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [46] Quantum acoustics with superconducting qubits
    Chu, Yiwen
    Kharel, Prashanta
    Renninger, William H.
    Burkhart, Luke D.
    Frunzio, Luigi
    Rakich, Peter T.
    Schoelkopf, Robert J.
    SCIENCE, 2017, 358 (6360) : 199 - 202
  • [47] Driving superconducting qubits into chaos
    Chavez-Carlos, Jorge
    Reynoso, Miguel A. Prado
    Cortinas, Rodrigo G.
    Garcia-Mata, Ignacio
    Batista, Victor S.
    Perez-Bernal, Francisco
    Wisniacki, Diego A.
    Santos, Lea F.
    QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01):
  • [48] Progress of coupled superconducting qubits
    Zhao Na
    Liu Jian-She
    Li Tie-Fu
    Chen Wei
    ACTA PHYSICA SINICA, 2013, 62 (01)
  • [49] Microwave Packaging for Superconducting Qubits
    Lienhard, Benjamin
    Braumuller, Jochen
    Woods, Wayne
    Rosenberg, Danna
    Calusine, Greg
    Weber, Steven
    Vepsalainen, Antti
    O'Brien, Kevin
    Orlando, Terry P.
    Gustavsson, Simon
    Oliver, William D.
    2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 275 - 278
  • [50] Superconducting qubits: poised for computing?
    Siddiqi, I.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2011, 24 (09):