On Vector-Valued Characters for Noncommutative Function Algebras

被引:0
|
作者
David P. Blecher
Louis E. Labuschagne
机构
[1] University of Houston,Department of Mathematics
[2] NWU,DSI
来源
关键词
Operator algebra; Noncommutative function theory; Jensen inequality; Jensen measure; Gleason parts; Extension of linear map; von Neumann algebra; Conditional expectation;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a closed subalgebra of a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra, that is a norm-closed algebra of Hilbert space operators. We generalize to such operator algebras several key theorems and concepts from the theory of classical function algebras. In particular we consider several problems that arise when generalizing classical function algebra results involving characters (nontrivial homomorphisms from the algebra into the scalars). For example, the Jensen inequality, the related Bishop–Ito–Schreiber theorem, and the theory of Gleason parts. Inspired by Arveson’s work on noncommutative Hardy spaces, we replace characters (classical function algebra case) by D-characters; certain completely contractive homomorphisms Φ:A→D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi : A \rightarrow D$$\end{document}, where D is a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-subalgebra of A. Using Brown’s measure and a potential theoretic balayage argument we prove a partial noncommutative Jensen inequality appropriate for C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras with a tracial state. We also show that this Jensen inequality characterizes D-characters among the module maps. Other advances include a theory of noncommutative Gleason parts appropriate for D-characters, which uses Harris’ noncommutative hyperbolic metric and Schwarz–Pick inequality, and other ingredients. As an application of Gleason parts we show that in the antisymmetric case, one is guaranteed the existence of a ‘quantum’ Wermer embedding function, and also of non-trivial compact Hankel operators, whenever the Gleason part of the canonical trace is rich in tracial states.
引用
收藏
相关论文
共 50 条
  • [21] Weighted algebras of vector-valued continuous functions
    Oubbi, L
    [J]. MATHEMATISCHE NACHRICHTEN, 2000, 212 : 117 - 133
  • [22] THE BSE CONCEPTS FOR VECTOR-VALUED LIPSCHITZ ALGEBRAS
    Abtahi, Fatemeh
    Kamali, Zeinab
    Toutounchi, Maryam
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1171 - 1186
  • [23] Isometries on Banach algebras of vector-valued maps
    Hatori, Osamu
    Oi, Shiho
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2018, 84 (1-2): : 151 - 183
  • [24] Contractibility of vector-valued Köthe echelon algebras
    Krzysztof Piszczek
    [J]. Annals of Functional Analysis, 2022, 13
  • [25] Contractibility of vector-valued Kothe echelon algebras
    Piszczek, Krzysztof
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (04)
  • [26] Isometries on Banach algebras of vector-valued maps
    Osamu Hatori
    Shiho Oi
    [J]. Acta Scientiarum Mathematicarum, 2018, 84 (1-2): : 151 - 183
  • [27] THE SECOND DUAL OF VECTOR-VALUED LIPSCHITZ ALGEBRAS
    Biyabani, Emamgholi
    Rejali, Ali
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 103 - 110
  • [29] ON THE CHARACTER SPACE OF VECTOR-VALUED LIPSCHITZ ALGEBRAS
    Honary, T.
    Nikou, A.
    Sanatpour, A. H.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (06) : 1453 - 1468
  • [30] Some Properties of Vector-valued Lipschitz Algebras
    Azizi, Mohsen
    Biyabani, Emamgholi
    Rejali, Ali
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02): : 191 - 205