On Vector-Valued Characters for Noncommutative Function Algebras

被引:0
|
作者
David P. Blecher
Louis E. Labuschagne
机构
[1] University of Houston,Department of Mathematics
[2] NWU,DSI
来源
关键词
Operator algebra; Noncommutative function theory; Jensen inequality; Jensen measure; Gleason parts; Extension of linear map; von Neumann algebra; Conditional expectation;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a closed subalgebra of a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra, that is a norm-closed algebra of Hilbert space operators. We generalize to such operator algebras several key theorems and concepts from the theory of classical function algebras. In particular we consider several problems that arise when generalizing classical function algebra results involving characters (nontrivial homomorphisms from the algebra into the scalars). For example, the Jensen inequality, the related Bishop–Ito–Schreiber theorem, and the theory of Gleason parts. Inspired by Arveson’s work on noncommutative Hardy spaces, we replace characters (classical function algebra case) by D-characters; certain completely contractive homomorphisms Φ:A→D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi : A \rightarrow D$$\end{document}, where D is a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-subalgebra of A. Using Brown’s measure and a potential theoretic balayage argument we prove a partial noncommutative Jensen inequality appropriate for C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras with a tracial state. We also show that this Jensen inequality characterizes D-characters among the module maps. Other advances include a theory of noncommutative Gleason parts appropriate for D-characters, which uses Harris’ noncommutative hyperbolic metric and Schwarz–Pick inequality, and other ingredients. As an application of Gleason parts we show that in the antisymmetric case, one is guaranteed the existence of a ‘quantum’ Wermer embedding function, and also of non-trivial compact Hankel operators, whenever the Gleason part of the canonical trace is rich in tracial states.
引用
收藏
相关论文
共 50 条
  • [1] On Vector-Valued Characters for Noncommutative Function Algebras
    Blecher, David P.
    Labuschagne, Louis E.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
  • [2] VECTOR-VALUED CHARACTERS ON VECTOR-VALUED FUNCTION ALGEBRAS
    Abtahi, Mortaza
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 10 (03): : 608 - 620
  • [3] Characters on algebras of vector-valued continuous functions
    Oubbi, Lahbib
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (03) : 947 - 957
  • [4] On Vector-Valued Banach Function Algebras
    Hakimeh Mahyar
    Kobra Esmaeili
    [J]. Bulletin of the Iranian Mathematical Society, 2022, 48 : 111 - 125
  • [5] On Vector-Valued Banach Function Algebras
    Mahyar, Hakimeh
    Esmaeili, Kobra
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) : 111 - 125
  • [6] Regularity conditions for vector-valued function algebras
    Barqi, Z.
    Abtahi, M.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 439 - 450
  • [7] ON THE CHARACTER SPACE OF BANACH VECTOR-VALUED FUNCTION ALGEBRAS
    Abtahi, M.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (05): : 1195 - 1207
  • [8] Noncommutative vector-valued symmetric Hardy spaces
    Tulenov K.S.
    [J]. Russian Mathematics, 2015, 59 (11) : 74 - 79
  • [9] THE BSE PROPERTY FOR SOME VECTOR-VALUED BANACH FUNCTION ALGEBRAS
    Fatemeh ABTAHI
    Ali REJALI
    Farshad SAYAF
    [J]. Acta Mathematica Scientia., 2024, 44 (05) - 1954
  • [10] The BSE property for some vector-valued Banach function algebras
    Abtahi, Fatemeh
    Rejali, Ali
    Sayaf, Farshad
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 1945 - 1954