The dual complex of Calabi–Yau pairs

被引:0
|
作者
János Kollár
Chenyang Xu
机构
[1] Princeton University,
[2] Beijing International Center of Mathematics Research,undefined
来源
Inventiones mathematicae | 2016年 / 205卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A log Calabi–Yau pair consists of a proper variety X and a divisor D on it such that KX+D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+D$$\end{document} is numerically trivial. A folklore conjecture predicts that the dual complex of D is homeomorphic to the quotient of a sphere by a finite group. The main result of the paper shows that the fundamental group of the dual complex of D is a quotient of the fundamental group of the smooth locus of X, hence its pro-finite completion is finite. This leads to a positive answer in dimension ≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le $$\end{document}4. We also study the dual complex of degenerations of Calabi–Yau varieties. The key technical result we prove is that, after a volume preserving birational equivalence, the transform of D supports an ample divisor.
引用
收藏
页码:527 / 557
页数:30
相关论文
共 50 条
  • [41] Generalized Calabi-Yau manifolds and the chiral de Rham complex
    Heluani, Reimundo
    Zabzine, Maxim
    ADVANCES IN MATHEMATICS, 2010, 223 (05) : 1815 - 1844
  • [42] LIOUVILLE AND CALABI-YAU TYPE THEOREMS FOR COMPLEX HESSIAN EQUATIONS
    Dinew, Slawomir
    Kolodziej, Slawomir
    AMERICAN JOURNAL OF MATHEMATICS, 2017, 139 (02) : 403 - 415
  • [43] Cyclic Coverings, Calabi-Yau Manifolds and Complex Multiplication Introduction
    Rohde J.C.
    CYCLIC COVERINGS, CALABI-YAU MANIFOLDS AND COMPLEX MULTIPLICATION, 2009, 1975 : 1 - +
  • [44] Complete Calabi-Yau metrics from smoothing Calabi-Yau complete intersections
    Firester, Benjy J.
    GEOMETRIAE DEDICATA, 2024, 218 (02)
  • [45] Universal Calabi-Yau algebra: Towards an unification of complex geometry
    Anselmo, F
    Ellis, J
    Nanopoulos, DV
    Volkov, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (30): : 5541 - 5612
  • [46] Calabi-Yau manifolds of cohomogeneity one as complex line bundles
    Higashijima, K
    Kimura, T
    Nitta, M
    NUCLEAR PHYSICS B, 2002, 645 (03) : 438 - 456
  • [47] Brane-worlds and the Calabi-Yau complex structure moduli
    Emam, Moataz H.
    Salah, H. H.
    Salem, Safinaz
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (19)
  • [48] Dihedral symmetries of gauge theories from dual Calabi-Yau threefolds
    Bastian, Brice
    Hohenegger, Stefan
    PHYSICAL REVIEW D, 2019, 99 (06)
  • [49] The Calabi-Yau Theorem
    Blocki, Zbigniew
    COMPLEX MONGE-AMPERE EQUATIONS AND GEODESICS IN THE SPACE OF KAHLER METRICS, 2012, 2038 : 201 - 227
  • [50] On Calabi-Yau supermanifolds
    Rocek, Martin
    Wadhwa, Neal
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (02) : 315 - 320