The dual complex of Calabi–Yau pairs

被引:0
|
作者
János Kollár
Chenyang Xu
机构
[1] Princeton University,
[2] Beijing International Center of Mathematics Research,undefined
来源
Inventiones mathematicae | 2016年 / 205卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A log Calabi–Yau pair consists of a proper variety X and a divisor D on it such that KX+D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_X+D$$\end{document} is numerically trivial. A folklore conjecture predicts that the dual complex of D is homeomorphic to the quotient of a sphere by a finite group. The main result of the paper shows that the fundamental group of the dual complex of D is a quotient of the fundamental group of the smooth locus of X, hence its pro-finite completion is finite. This leads to a positive answer in dimension ≤\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le $$\end{document}4. We also study the dual complex of degenerations of Calabi–Yau varieties. The key technical result we prove is that, after a volume preserving birational equivalence, the transform of D supports an ample divisor.
引用
收藏
页码:527 / 557
页数:30
相关论文
共 50 条
  • [1] The dual complex of Calabi-Yau pairs
    Kollar, Janos
    Xu, Chenyang
    INVENTIONES MATHEMATICAE, 2016, 205 (03) : 527 - 557
  • [2] The dual complex of log Calabi-Yau pairs on Mori fibre spaces
    Mauri, Mirko
    ADVANCES IN MATHEMATICS, 2020, 364
  • [3] Moduli of Polarized Calabi–Yau Pairs
    János KOLLáR
    Chen Yang XU
    Acta Mathematica Sinica,English Series, 2020, (06) : 631 - 637
  • [4] Moduli of Polarized Calabi—Yau Pairs
    János Kollár
    Chen Yang Xu
    Acta Mathematica Sinica, English Series, 2020, 36 : 631 - 637
  • [5] Moduli of Polarized Calabi–Yau Pairs
    Jnos KOLLR
    Chen Yang XU
    Acta Mathematica Sinica, 2020, 36 (06) : 631 - 637
  • [6] Moduli of Polarized Calabi-Yau Pairs
    Kollar, Janos
    Xu, Chen Yang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 631 - 637
  • [7] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010
  • [8] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Lee, Nam-Hoon
    JOURNAL OF HIGH ENERGY PHYSICS, 2010, (04):
  • [9] Semi-Calabi-Yau orbifolds and mirror pairs
    Chiodo, Alessandro
    Kalashnikov, Elana
    Veniani, Davide Cesare
    ADVANCES IN MATHEMATICS, 2020, 363
  • [10] An unbounded family of log Calabi-Yau pairs
    Bini, Gilberto
    Favale, Filippo F.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (03) : 619 - 633