The Functional Renormalization Group Treatment of Disordered Systems, a Review

被引:0
|
作者
Kay Jörg Wiese
机构
[1] University of California at Santa Barbara,KITP, Kohn Hall
来源
Annales Henri Poincaré | 2003年 / 4卷
关键词
Domain Wall; Dimensional Reduction; Disorder System; Universality Class; Pure System;
D O I
暂无
中图分类号
学科分类号
摘要
We review current progress in the functional renormalization group treatment of disordered systems. After an elementary introduction into the phenomenology, we show why in the context of disordered systems a functional renormalization group treatment is necessary, contrary to pure systems, where renormalization of a single coupling constant is sufficient. This leads to a disorder distribution, which after a finite renormalization becomes non-analytic, thus overcoming the predictions of the seemingly exact dimensional reduction. We discuss, how a renormalizable field theory can be constructed, even beyond 1-loop order. We then discuss an elastic manifold embedded in N dimensions, and give the exact solution for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty$$\end{document}. This is compared to predictions of the Gaussian replica variational ansatz, using replica symmetry breaking. We finally review depinning, both isotropic and anisotropic, and the scaling function for the width distribution of an interface.
引用
收藏
页码:505 / 528
页数:23
相关论文
共 50 条
  • [31] Renormalization group approach to reaction-diffusion systems with input in disordered media
    Park, JM
    STOCHASTIC DYNAMICS AND PATTERN FORMATION IN BIOLOGICAL AND COMPLEX SYSTEMS, 2000, 501 : 324 - 332
  • [32] Metallic Glass in Two Dimensional Disordered Bose Systems; A Renormalization Group Approach
    M. Crisan
    D. Bodea
    I. Grosu
    I. Ţifrea
    Journal of Superconductivity and Novel Magnetism, 2008, 21 : 51 - 55
  • [33] Numerical treatment of spin systems with unrestricted spin length S: A functional renormalization group study
    Baez, M. L.
    Reuther, J.
    PHYSICAL REVIEW B, 2017, 96 (04)
  • [34] Multiloop functional renormalization group approach to quantum spin systems
    Kiese, Dominik
    Mueller, Tobias
    Iqbal, Yasir
    Thomale, Ronny
    Trebst, Simon
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [35] Functional renormalization group approach for inhomogeneous interacting Fermi systems
    Bauer, Florian
    Heyder, Jan
    von Delft, Jan
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [36] Spin functional renormalization group for dimerized quantum spin systems
    Rueckriegel, Andreas
    Arnold, Jonas
    Goll, Raphael
    Kopietz, Peter
    PHYSICAL REVIEW B, 2022, 105 (22)
  • [37] RENORMALIZATION-GROUP STUDY OF A DISORDERED MODEL
    DERRIDA, B
    GARDNER, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (16): : 3223 - 3236
  • [38] Functional renormalization group at large N for disordered elastic systems, and relation to replica symmetry breaking -: art. no. 174202
    Le Doussal, P
    Wiese, KJ
    PHYSICAL REVIEW B, 2003, 68 (17):
  • [39] Cluster functional renormalization group
    Reuther, Johannes
    Thomale, Ronny
    PHYSICAL REVIEW B, 2014, 89 (02):
  • [40] Renormalized functional renormalization group
    Lippoldt, Stefan
    PHYSICS LETTERS B, 2018, 782 : 275 - 279