Power spectrum of generalized Cauchy process

被引:0
|
作者
Ming Li
S. C. Lim
机构
[1] East China Normal University,School of Information Science & Technology
[2] Multimedia University,Faculty of Engineering
来源
Telecommunication Systems | 2010年 / 43卷
关键词
Long-range dependence; Generalized Cauchy process; Power spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
The generalized Cauchy process was recently applied to modeling long-range dependent traffic. However, the closed form of the power spectrum density of the generalized Cauchy process is a problem that remains unsolved. This paper gives the solution to that problem. The property of the power-law-type power spectrum density for the generalized Cauchy process is pointed out and discussed.
引用
收藏
页码:219 / 222
页数:3
相关论文
共 50 条
  • [21] Cauchy Power Azimuth Spectrum for Clustered Radio Propagation MIMO Channel Model
    Li, Xin
    Ekman, Torbjorn
    2010 IEEE 72ND VEHICULAR TECHNOLOGY CONFERENCE FALL, 2010,
  • [22] CAUCHY TRANSFORMATION OF GENERALIZED FUNCTIONS
    KAKICHEV, VA
    DOKLADY AKADEMII NAUK SSSR, 1960, 134 (06): : 1287 - 1290
  • [23] Stability of generalized Cauchy equations
    Roman Badora
    Barbara Przebieracz
    Peter Volkmann
    Aequationes mathematicae, 2015, 89 : 49 - 56
  • [24] Generalized Cauchy Integrals on the Plane
    Polunin, Viktor A.
    Soldatov, Alexandre P.
    FILOMAT, 2018, 32 (03) : 1107 - 1116
  • [25] Isometries and a generalized Cauchy equation
    Ger R.
    Koclega B.
    Aequationes mathematicae, 2000, 60 (1-2) : 72 - 79
  • [26] Stability of generalized Cauchy equations
    Badora, Roman
    Przebieracz, Barbara
    Volkmann, Peter
    AEQUATIONES MATHEMATICAE, 2015, 89 (01) : 49 - 56
  • [27] The Cauchy Problem for a Generalized Spatial Cauchy-Riemann System
    Sattorov, E. N.
    RUSSIAN MATHEMATICS, 2010, 54 (05) : 27 - 34
  • [28] Generalized-confluent Cauchy and Cauchy-Vandermonde matrices
    Yang, ZH
    Chen, GN
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) : 31 - 64
  • [29] POWER SPECTRUM OF THE PERIODIC GROUP PULSE PROCESS
    VOKURKA, K
    KYBERNETIKA, 1980, 16 (05) : 462 - 471
  • [30] Cauchy cluster process
    Mohammad Ghorbani
    Metrika, 2013, 76 : 697 - 706