Perfect state transfer in Laplacian quantum walk

被引:0
|
作者
Rachael Alvir
Sophia Dever
Benjamin Lovitz
James Myer
Christino Tamon
Yan Xu
Hanmeng Zhan
机构
[1] Colorado Mesa University,Department of Mathematics and Statistics
[2] University of Texas at Austin,Department of Mathematics
[3] Bates College,Mathematics Department
[4] SUNY Potsdam,Department of Mathematics
[5] Clarkson University,Department of Computer Science
[6] University of Waterloo,Department of Combinatorics and Optimization
来源
关键词
Laplacian; Quantum walk; Perfect state transfer ; Join; Equitable partition; Weak product; MC05C50;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G and a related symmetric matrix M, the continuous-time quantum walk on G relative to M is defined as the unitary matrix U(t)=exp(-itM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(t) = \exp (-itM)$$\end{document}, where t varies over the reals. Perfect state transfer occurs between vertices u and v at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if the (u, v)-entry of U(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U(\tau )$$\end{document} has unit magnitude. This paper studies quantum walks relative to graph Laplacians. Some main observations include the following closure properties for perfect state transfer. If an n-vertex graph has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the Laplacian, then so does its complement if nτ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with any m-vertex graph has perfect state transfer relative to the Laplacian if and only if m≡2(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \equiv 2\pmod {4}$$\end{document}. This was previously known for the join of K¯2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{K}_{2}$$\end{document} with a clique (Bose et al. in Int J Quant Inf 7:713–723, 2009). If a graph G has perfect state transfer at time τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} relative to the normalized Laplacian, then so does the weak product G×H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \times H$$\end{document} if for any normalized Laplacian eigenvalues λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of G and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} of H, we have μ(λ-1)τ∈2πZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (\lambda -1)\tau \in 2\pi {\mathbb {Z}}$$\end{document}. As a corollary, a weak product of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} with an even clique or an odd cube has perfect state transfer relative to the normalized Laplacian. It was known earlier that a weak product of a circulant with odd integer eigenvalues and an even cube or a Cartesian power of P3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{3}$$\end{document} has perfect state transfer relative to the adjacency matrix. As for negative results, no path with four vertices or more has antipodal perfect state transfer relative to the normalized Laplacian. This almost matches the state of affairs under the adjacency matrix (Godsil in Discret Math 312(1):129–147, 2011).
引用
下载
收藏
页码:801 / 826
页数:25
相关论文
共 50 条
  • [31] Breaking the speed limit for perfect quantum state transfer
    Xie, Weichen
    Kay, Alastair
    Tamon, Christino
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [32] Perfect state transfer via quantum probability theory
    S. Salimi
    S. Ghoraishipour
    A. Sorouri
    Quantum Information Processing, 2013, 12 : 505 - 523
  • [33] Discrete-time quantum walk approach to state transfer
    Kurzynski, Pawel
    Wojcik, Antoni
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [34] Quantum Perfect State Transfer in a 2D Lattice
    Post, Sarah
    ACTA APPLICANDAE MATHEMATICAE, 2015, 135 (01) : 209 - 224
  • [35] Characterization of quantum circulant networks having perfect state transfer
    Milan Bašić
    Quantum Information Processing, 2013, 12 : 345 - 364
  • [36] Perfect quantum state transfer using Hadamard diagonalizable graphs
    Johnston, Nathaniel
    Kirkland, Steve
    Plosker, Sarah
    Storey, Rebecca
    Zhang, Xiaohong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 531 : 375 - 398
  • [38] Explicit designs of spin chains for perfect quantum state transfer
    Xi, X. Q.
    Gong, J. B.
    Zhang, T.
    Yue, R. H.
    Liu, W. M.
    EUROPEAN PHYSICAL JOURNAL D, 2008, 50 (02): : 193 - 199
  • [39] Characterization of quantum circulant networks having perfect state transfer
    Basic, Milan
    QUANTUM INFORMATION PROCESSING, 2013, 12 (01) : 345 - 364
  • [40] Optimal control for perfect state transfer in linear quantum memory
    Nakao, Hideaki
    Yamamoto, Naoki
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2017, 50 (06)