The Jacobson Property in Banach algebras

被引:0
|
作者
H. Raubenheimer
A. Swartz
机构
[1] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Banach algebra; Regularities; Semiregularities; Spectral theory; 46H05;
D O I
暂无
中图分类号
学科分类号
摘要
In a Banach algebra A it is well known that the usual spectrum has the following property: σ(ab)\{0}=σ(ba)\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sigma (ab) \setminus \{0\} = \sigma (ba) \setminus \{0\} \end{aligned}$$\end{document}for elements a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \in A$$\end{document}. In this note we are interested in subsets of A that have the Jacobson Property, i.e. X⊂A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset A$$\end{document} such that for a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \in A$$\end{document}: 1-ab∈X⇒1-ba∈X.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1 - ab \in X \implies 1 - ba \in X. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条