The Jacobson Property in Banach algebras

被引:0
|
作者
H. Raubenheimer
A. Swartz
机构
[1] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
Afrika Matematika | 2022年 / 33卷
关键词
Banach algebra; Regularities; Semiregularities; Spectral theory; 46H05;
D O I
暂无
中图分类号
学科分类号
摘要
In a Banach algebra A it is well known that the usual spectrum has the following property: σ(ab)\{0}=σ(ba)\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sigma (ab) \setminus \{0\} = \sigma (ba) \setminus \{0\} \end{aligned}$$\end{document}for elements a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \in A$$\end{document}. In this note we are interested in subsets of A that have the Jacobson Property, i.e. X⊂A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subset A$$\end{document} such that for a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \in A$$\end{document}: 1-ab∈X⇒1-ba∈X.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 1 - ab \in X \implies 1 - ba \in X. \end{aligned}$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] The Jacobson Property in Banach algebras
    Raubenheimer, H.
    Swartz, A.
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [3] The Jacobson property in rings and Banach algebras
    A. Swartz
    Afrika Matematika, 2023, 34
  • [4] Jacobson's Lemma for Spectral Idempotents in Banach Algebras
    Peng, Fei
    Zhang, Xiaoxiang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (08)
  • [5] MULTIPLICATIVE EXTENSION PROPERTY IN BANACH ALGEBRAS
    LEVI, S
    BULLETIN DES SCIENCES MATHEMATIQUES, 1977, 101 (02): : 189 - 208
  • [6] BED property for the tensor product of Banach algebras
    Abtahi, Fatemeh
    Pedaran, Hmad
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 105 (1-2): : 91 - 105
  • [7] The Fixed Point Property of Unital Abelian Banach Algebras
    Fupinwong, W.
    Dhompongsa, S.
    FIXED POINT THEORY AND APPLICATIONS, 2010,
  • [8] Banach algebras with bounded groups of generators, and the Schur property
    Mustafaev, GS
    MATHEMATICAL NOTES, 2002, 71 (5-6) : 661 - 666
  • [9] The projection property of a family of ideals in subalgebras of Banach algebras
    González, AV
    Wawrzynczyk, A
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2002, 8 (02): : 155 - 160
  • [10] THE BOCHNER-SCHOENBFRG-EBERLEIN PROPERTY OF EXTENSIONS OF BANACH ALGEBRAS AND BANACH MODULES
    Alizadeh, Nasrin
    Ebadian, Ali
    Ostadbashi, Saeid
    Jabbari, Ali
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (01) : 134 - 145