A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V

被引:0
|
作者
Zhuohan Cao
Qian Liu
Qianchu Liu
Xiaobo Yu
Jamie J. Kruzic
Xiaopeng Li
机构
[1] University of New South Wales (UNSW Sydney),School of Mechanical and Manufacturing Engineering
[2] Defence Science and Technology Group,Platforms Division
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantitatively defining the relationship between laser powder bed fusion (LPBF) process parameters and the resultant microstructures for LPBF fabricated alloys is one of main research challenges. To date, achieving the desired microstructures and mechanical properties for LPBF alloys is generally done by time-consuming and costly trial-and-error experiments that are guided by human experience. Here, we develop an approach whereby an image-driven conditional generative adversarial network (cGAN) machine learning model is used to reconstruct and quantitatively predict the key microstructural features (e.g., the morphology of martensite and the size of primary and secondary martensite) for LPBF fabricated Ti-6Al-4V. The results demonstrate that the developed image-driven machine learning model can effectively and efficiently reconstruct micrographs of the microstructures within the training dataset and predict the microstructural features beyond the training dataset fabricated by different LPBF parameters (i.e., laser power and laser scan speed). This study opens an opportunity to establish and quantify the relationship between processing parameters and microstructure in LPBF Ti-6Al-4V using a GAN machine learning-based model, which can be readily extended to other metal alloy systems, thus offering great potential in applications related to process optimisation, material design, and microstructure control in the additive manufacturing field.
引用
收藏
相关论文
共 50 条
  • [41] A review on in vitro/in vivo response of additively manufactured Ti-6Al-4V alloy
    Alipour, Saeid
    Nour, Shirin
    Attari, Seyyed Morteza
    Mohajeri, Mohammad
    Kianersi, Sogol
    Taromian, Farzaneh
    Khalkhali, Mohammadparsa
    Aninwene, George E., II
    Tayebi, Lobat
    JOURNAL OF MATERIALS CHEMISTRY B, 2022, 10 (46) : 9479 - 9534
  • [42] Microstructure effects on fatigue crack growth in additively manufactured Ti-6Al-4V
    VanSickle, Raeann
    Foehring, David
    Chew, Huck Beng
    Lambros, John
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 795
  • [43] Hot Isostatic Pressing for Fatigue Critical Additively Manufactured Ti-6Al-4V
    Moran, Terrence P.
    Carrion, Patricio E.
    Lee, Seungjong
    Shamsaei, Nima
    Phan, Nam
    Warner, Derek H.
    MATERIALS, 2022, 15 (06)
  • [44] A survey of fatigue properties from wrought and additively manufactured Ti-6Al-4V
    Rao, Jeremy H.
    Stanford, Nikki
    MATERIALS LETTERS, 2021, 283
  • [45] Electropolishing of Additively Manufactured Ti-6Al-4V Surfaces in Nontoxic Electrolyte Solution
    Tsoeunyane, G. M.
    Mathe, N.
    Tshabalala, L.
    Makhatha, M. E.
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2022, 2022
  • [46] The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V
    Zhang, Chen
    Zou, Dongyi
    Mazur, Maciej
    Mo, John P. T.
    Li, Guangxian
    Ding, Songlin
    MATERIALS, 2023, 16 (07)
  • [47] Accelerating globularization in additively manufactured Ti-6Al-4V by exploiting martensitic laths
    Kim, In-Su
    Oh, Jeong Mok
    Lee, Sang Won
    Yeom, Jong-Taek
    Hong, Jae-Keun
    Park, Chan Hee
    Lee, Taekyung
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 12 : 304 - 315
  • [48] Surface roughness effects on the fatigue strength of additively manufactured Ti-6Al-4V
    Pegues, Jonathan
    Roach, Michael
    Williamson, R. Scott
    Shamsaei, Nima
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 116 : 543 - 552
  • [49] Directional and oscillating residual stress on the mesoscale in additively manufactured Ti-6Al-4V
    Strantza, M.
    Vrancken, B.
    Prime, M. B.
    Truman, C. E.
    Rombouts, M.
    Brown, D. W.
    Guillaume, P.
    Van Hemelrijck, D.
    ACTA MATERIALIA, 2019, 168 : 299 - 308
  • [50] Effect of different hydrogen Fugacities on the microstructure of additively manufactured Ti-6Al-4V
    Metalnikov, Polina
    Kaya, Ali Arslan
    Ben-Hamu, Guy
    Eliezer, Dan
    MATERIALS CHARACTERIZATION, 2023, 205