共 50 条
Mean Square Estimates for Coefficients of Symmetric Power L-Functions
被引:0
|作者:
Huixue Lao
机构:
[1] Shandong Normal University,Department of Mathematics
来源:
关键词:
Fourier coefficients of cusp forms;
Symmetric power ;
-function;
Rankin–Selberg ;
-function;
11F30;
11F11;
11F66;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let L(symjf,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\lambda_{\mathrm{sym}^{j}f}(n)$\end{document}
denote its nth coefficient. In this paper we are able to prove that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$$\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$$\end{document}
引用
收藏
页码:1127 / 1136
页数:9
相关论文