Mean Square Estimates for Coefficients of Symmetric Power L-Functions

被引:0
|
作者
Huixue Lao
机构
[1] Shandong Normal University,Department of Mathematics
来源
关键词
Fourier coefficients of cusp forms; Symmetric power ; -function; Rankin–Selberg ; -function; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let L(symjf,s) be the jth symmetric power L-function attached to a holomorphic Hecke eigencuspform f(z) for the full modular group, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{\mathrm{sym}^{j}f}(n)$\end{document} denote its nth coefficient. In this paper we are able to prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{3}f}(n)\bigg|^{2}dy=O\bigl(x^{2}\bigr),$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int_{1}^{x}\bigg|\sum_{n\leq y}\lambda_{\mathrm{sym}^{4}f}(n)\bigg|^{2}dy=O\bigl(x^{\frac{11}{5}}\log x\bigr).$$\end{document}
引用
收藏
页码:1127 / 1136
页数:9
相关论文
共 50 条
  • [1] Mean Square Estimates for Coefficients of Symmetric Power L-Functions
    Lao, Huixue
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1127 - 1136
  • [2] Discrete mean square estimates for coefficients of symmetric power L-functions
    Sankaranarayanan, A.
    Singh, Saurabh Kumar
    Srinivas, K.
    ACTA ARITHMETICA, 2019, 190 (02) : 193 - 208
  • [3] Estimates for the Fourier coefficients of symmetric square L-functions
    Tang, Hengcai
    ARCHIV DER MATHEMATIK, 2013, 100 (02) : 123 - 130
  • [4] Estimates for the Fourier coefficients of symmetric square L-functions
    Hengcai Tang
    Archiv der Mathematik, 2013, 100 : 123 - 130
  • [5] Coefficients of symmetric square L-functions
    Yuk-Kam Lau
    JianYa Liu
    Jie Wu
    Science China Mathematics, 2010, 53 : 2317 - 2328
  • [6] Coefficients of symmetric square L-functions
    Lau Yuk-Kam
    Liu JianYa
    Wu Jie
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) : 2317 - 2328
  • [7] Coefficients of symmetric square L-functions
    LAU Yuk-Kam
    ScienceChina(Mathematics), 2010, 53 (09) : 2317 - 2328
  • [8] Uniform estimates for sums of coefficients of symmetric power L-functions
    Guohua Chen
    Xiaoguang He
    Lithuanian Mathematical Journal, 2022, 62 : 421 - 434
  • [9] Uniform estimates for sums of coefficients of symmetric power L-functions
    Chen, Guohua
    He, Xiaoguang
    LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (04) : 421 - 434
  • [10] The mean value of symmetric square L-functions
    Balkanova, Olga
    Frolenkov, Dmitry
    ALGEBRA & NUMBER THEORY, 2018, 12 (01) : 35 - 59