On a Subclass of Close-to-Convex Mappings

被引:0
|
作者
Qinghua Xu
Taishun Liu
Xiaosong Liu
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Huzhou Teachers College,Department of Mathematics
[3] Zhanjiang Normal University,School of Mathematics and Computation Science
来源
关键词
Distortion theorem; Growth theorem; Close-to-convex mappings of order ; 32A30; 32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the class of close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is introduced in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} or the unit polydisc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} . As an application, a sharp growth theorem for close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is obtained.
引用
收藏
页码:275 / 286
页数:11
相关论文
共 50 条
  • [21] On close-to-convex harmonic mappings
    Bshouty, D.
    Joshi, S. S.
    Joshi, S. B.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (09) : 1195 - 1199
  • [22] On a Subclass of Meromorphic Close-to-Convex Functions
    Li, Ming-Liang
    Shi, Lei
    Wang, Zhi-Gang
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [23] A GENERAL SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Xiong, Liangpeng
    Liu, Xiaoli
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 251 - 260
  • [24] ON CERTAIN SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    OWA, S
    MA, WC
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (04) : 106 - 108
  • [25] On certain new subclass of close-to-convex functions
    Seker, Bilal
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 1041 - 1045
  • [26] ON THE GENERALIZED CLASS OF CLOSE-TO-CONVEX MAPPINGS
    Xu, Qinghua
    Liu, Taishun
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 615 - 627
  • [27] A certain subclass of analytic and close-to-convex functions
    Xu, Qing-Hua
    Srivastava, H. M.
    Li, Zhou
    APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 396 - 401
  • [28] Conformal mappings of close-to-convex domains
    Carroll, T
    Twomey, JB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1997, 55 : 489 - 498
  • [29] ON CERTAIN NEW SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Wang, Zhi-Gang
    Gao, Chun-Yi
    Yuan, Shao-Mou
    MATEMATICKI VESNIK, 2006, 58 (3-4): : 119 - 124
  • [30] EXTREME POINTS OF A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    SILVERMAN, H
    TELAGE, DN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A101 - A101