On a Subclass of Close-to-Convex Mappings

被引:0
|
作者
Qinghua Xu
Taishun Liu
Xiaosong Liu
机构
[1] Jiangxi Normal University,College of Mathematics and Information Science
[2] Huzhou Teachers College,Department of Mathematics
[3] Zhanjiang Normal University,School of Mathematics and Computation Science
来源
关键词
Distortion theorem; Growth theorem; Close-to-convex mappings of order ; 32A30; 32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the class of close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is introduced in the unit ball of a complex Banach space, and then, we give the sharp distortion theorems for this class of mappings in the unit ball of a complex Hilbert space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document} or the unit polydisc in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document} . As an application, a sharp growth theorem for close-to-convex mappings of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is obtained.
引用
下载
收藏
页码:275 / 286
页数:11
相关论文
共 50 条
  • [1] On a Subclass of Close-to-Convex Mappings
    Xu, Qinghua
    Liu, Taishun
    Liu, Xiaosong
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (02) : 275 - 286
  • [2] On a subclass of close-to-convex harmonic mappings
    Sun, Yong
    Jiang, Yue-Ping
    Rasila, Antti
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (12) : 1627 - 1643
  • [3] A subclass of close-to-convex harmonic mappings
    Nagpal, Sumit
    Ravichandran, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (02) : 204 - 216
  • [4] On a subclass of harmonic close-to-convex mappings
    Nirupam Ghosh
    A. Vasudevarao
    Monatshefte für Mathematik, 2019, 188 : 247 - 267
  • [5] On a subclass of close-to-convex harmonic mappings
    Rajbala
    Prajapat, Jugal K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (06)
  • [6] On a subclass of harmonic close-to-convex mappings
    Ghosh, Nirupam
    Vasudevarao, A.
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (02): : 247 - 267
  • [7] A NEW SUBCLASS OF CLOSE-TO-CONVEX HARMONIC MAPPINGS
    Wang, Xiao-yuan
    Wang, Zhi-gang
    Fan, Jin-hua
    Hu, Zhen-yong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 765 - 795
  • [8] Sharp distortion theorems for a subclass of close-to-convex mappings
    Xu, Qinghua
    Liu, Taishun
    Liu, Xiaosong
    FRONTIERS OF MATHEMATICS IN CHINA, 2013, 8 (06) : 1425 - 1436
  • [9] Sharp distortion theorems for a subclass of close-to-convex mappings
    Qinghua Xu
    Taishun Liu
    Xiaosong Liu
    Frontiers of Mathematics in China, 2013, 8 : 1425 - 1436
  • [10] Geometric Properties of Certain Subclass of Close-to-Convex Harmonic Mappings
    Gochhayat, Priyabrat
    Mahata, Sima
    VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (01) : 175 - 195