A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review

被引:0
|
作者
Anil Arya
A. L. Sharma
机构
[1] Central University of Punjab,Department of Physical Sciences
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
All-solid-state batteries are swiftly gaining the attention of the research community owing to their widespread applications in electric vehicles, digital electronics, portable appliances, etc. A battery comprises three components: cathode, anode and electrolyte. An electrolyte is the heart of the battery and plays a crucial role in the overall performance of the battery. In order to make the review more focused, all-solid-state Li-ion batteries (ASSLIBs) have been considered. This review covers the architecture of ASSLIBs, advantages, and characteristics of the solid polymer electrolytes. The important preparation methods are summarized, followed by the characterizations for testing the suitability of electrolytes for solid-state batteries. The discussion is focused on the ‘state of the art’ in the field of solid-state batteries, device fabrication, and comparison in terms of capacity, energy density, and cyclic stability. In the last section, the ion conduction mechanism in different solid polymer electrolytes is discussed. Finally, it is tried to give a possible outlook for developing future hybrid and multifunctional electrolytes which can act as a bridge for developing solid-state batteries covering a broad range of applications.
引用
收藏
页码:6242 / 6304
页数:62
相关论文
共 50 条
  • [1] A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review
    Arya, Anil
    Sharma, A. L.
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (15) : 6242 - 6304
  • [2] Analysis of Li distribution in ultrathin all-solid-state Li-ion battery (ASSLiB) by neutron depth profiling (NDP)
    Tomandl, I.
    Vacik, J.
    Kobayashi, T.
    Sierra, Y. Mora
    Hnatowicz, V.
    Lavreniev, V.
    Horak, P.
    Ceccio, G.
    Cannavo, A.
    Baba, M.
    Ye, R.
    RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2020, 175 (3-4): : 394 - 405
  • [3] An advanced all-solid-state Li-ion battery model
    Raijmakers, L. H. J.
    Danilov, D. L.
    Eichel, R-A.
    Notten, P. H. L.
    ELECTROCHIMICA ACTA, 2020, 330
  • [4] Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries
    Li, Jun
    Zhu, Kongjun
    Wang, Jing
    Yan, Kang
    Liu, Jinsong
    Yao, Zhongran
    Xu, Yuan
    MATERIALS TECHNOLOGY, 2022, 37 (04) : 240 - 247
  • [5] Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries
    Zhang, Zhixia
    Zhang, Long
    Liu, Yanyan
    Yu, Chuang
    Yan, Xinlin
    Xu, Bo
    Wang, Li-min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 : 227 - 235
  • [6] All-solid-state Li-ion batteries with commercially available electrolytes: A feasibility review
    Goetz, Rainer
    Streng, Raphael
    Sterzinger, Johannes
    Steeger, Tim
    Kaye, Matti M.
    Vitort, Maksym
    Bandarenka, Aliaksandr S.
    INFOMAT, 2024, 6 (12)
  • [7] Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries
    Mabuchi, Takuya
    Nakajima, Koki
    Tokumasu, Takashi
    MICROMACHINES, 2021, 12 (09)
  • [8] All-solid-state Li-ion batteries
    不详
    CHEMISTRY & INDUSTRY, 2024, 88 (12)
  • [9] Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries
    Kim, Dong Hyeon
    Oh, Dae Yang
    Park, Kern Ho
    Choi, Young Eun
    Nam, Young Jin
    Lee, Han Ah
    Lee, Sang-Min
    Jung, Yoon Seok
    NANO LETTERS, 2017, 17 (05) : 3013 - 3020
  • [10] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    JOURNAL OF POWER SOURCES, 2021, 482