Molecular Dynamics Study of Ion Transport in Polymer Electrolytes of All-Solid-State Li-Ion Batteries

被引:10
|
作者
Mabuchi, Takuya [1 ,2 ]
Nakajima, Koki [2 ,3 ]
Tokumasu, Takashi [2 ]
机构
[1] Tohoku Univ, Frontier Res Inst Interdisciplinary Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[2] Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Tohoku Univ, Grad Sch Engn, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
关键词
molecular dynamics; polymer electrolyte; lithium-ion battery; salt concentration; hopping mechanism; TRANSFERENCE NUMBER; SALT CONCENTRATION; PROTON TRANSPORT; WEIGHT; CONDUCTIVITY; TEMPERATURE; MODEL;
D O I
10.3390/mi12091012
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries
    Zhang, Zhixia
    Zhang, Long
    Liu, Yanyan
    Yu, Chuang
    Yan, Xinlin
    Xu, Bo
    Wang, Li-min
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 747 : 227 - 235
  • [2] Modeling All-Solid-State Li-Ion Batteries
    Danilov, D.
    Niessen, R. A. H.
    Notten, P. H. L.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A215 - A222
  • [3] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    [J]. JOURNAL OF POWER SOURCES, 2021, 482
  • [4] High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries
    Zhou, Qiongyu
    Li, Qinghui
    Liu, Songli
    Yin, Xin
    Huang, Bing
    Sheng, Minqi
    [J]. Journal of Power Sources, 2022, 482
  • [5] Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries
    Meesala, Yedukondalu
    Jena, Anirudha
    Chang, Ho
    Liu, Ru-Shi
    [J]. ACS ENERGY LETTERS, 2017, 2 (12): : 2734 - 2751
  • [6] Recent advances of all-solid-state polymer electrolyte for Li-ion batteries
    Ling, ZJ
    He, XM
    Li, JJ
    Jiang, CY
    Wan, CR
    [J]. PROGRESS IN CHEMISTRY, 2006, 18 (04) : 459 - 466
  • [7] Optimisation of conductivity of PEO/PVDF-based solid polymer electrolytes in all-solid-state Li-ion batteries
    Li, Jun
    Zhu, Kongjun
    Wang, Jing
    Yan, Kang
    Liu, Jinsong
    Yao, Zhongran
    Xu, Yuan
    [J]. MATERIALS TECHNOLOGY, 2022, 37 (04) : 240 - 247
  • [8] High-Voltage Superionic Halide Solid Electrolytes for All-Solid-State Li-Ion Batteries
    Park, Kern-Ho
    Kaup, Kavish
    Assoud, Abdeljalil
    Zhang, Qiang
    Wu, Xiaohan
    Nazar, Linda F.
    [J]. ACS ENERGY LETTERS, 2020, 5 (02): : 533 - +
  • [9] In Situ/Operando Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle
    Jena, Anirudha
    Tong, Zizheng
    Bazri, Behrouz
    Iputera, Kevin
    Chang, Ho
    Hu, Shu-Fen
    Liu, Ru-Shi
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (31): : 16921 - 16937
  • [10] Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries
    Liu, Lehao
    Lyu, Jing
    Mo, Jinshan
    Yan, Hejin
    Xu, Lele
    Peng, Peng
    Li, Jingru
    Jiang, Bing
    Chu, Lihua
    Li, Meicheng
    [J]. NANO ENERGY, 2020, 69