Some results concerning partitions with designated summands

被引:0
|
作者
Shane Chern
Michael D. Hirschhorn
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] UNSW Sydney,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2021年 / 54卷
关键词
Partitions with designated summands; Tagged parts; Congruences; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
Let PD(n) and PDO(n) count, respectively, the number of partitions of n with designated summands and the number of partitions of n with designated summands where all parts are odd, and let PDt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PD_t(n)$$\end{document} and PDOt(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PDO_t(n)$$\end{document} count, respectively, the number of tags (that is, designated summands) in the partitions enumerated by PD(n) and PDO(n). We give elementary proofs of congruences for these partition functions.
引用
收藏
页码:385 / 395
页数:10
相关论文
共 50 条
  • [1] Some results concerning partitions with designated summands
    Chern, Shane
    Hirschhorn, Michael D.
    RAMANUJAN JOURNAL, 2021, 54 (02): : 385 - 395
  • [2] Partitions with designated summands
    Andrews, GE
    Lewis, RP
    Lovejoy, J
    ACTA ARITHMETICA, 2002, 105 (01) : 51 - 66
  • [3] Some New Results on the Number of Tagged Parts Over the Partitions with Designated Summands
    Mehta, Abhay
    Vandna
    Kaur, Mandeep
    CONTEMPORARY MATHEMATICS, 2024, 5 (01): : 602 - 607
  • [4] A crank of partitions with designated summands
    Shen, Erin Y. Y.
    RAMANUJAN JOURNAL, 2022, 57 (02): : 785 - 802
  • [5] A crank of partitions with designated summands
    Erin Y. Y. Shen
    The Ramanujan Journal, 2022, 57 : 785 - 802
  • [6] On the number of partitions with designated summands
    Chen, William Y. C.
    Ji, Kathy Q.
    Jin, Hai-Tao
    Shen, Erin Y. Y.
    JOURNAL OF NUMBER THEORY, 2013, 133 (09) : 2929 - 2938
  • [7] SOME THEOREMS CONCERNING PARTITIONS INTO ODD SUMMANDS
    HAGIS, P
    AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (03) : 664 - &
  • [8] A rank of partitions with overline designated summands
    Hao, Robert X. J.
    Shen, Erin Y. Y.
    Zang, Wenston J. T.
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [9] Arithmetic properties of partitions with designated summands
    Xia, Ernest X. W.
    JOURNAL OF NUMBER THEORY, 2016, 159 : 160 - 175
  • [10] Some new results on the number of tagged parts over the partitions with designated summands in which all parts are odd
    Vandna
    Kaur, Mandeep
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2022, 37 (04) : 419 - 435