Genetic programming for iterative numerical methods

被引:0
|
作者
Dominik Sobania
Jonas Schmitt
Harald Köstler
Franz Rothlauf
机构
[1] Johannes Gutenberg University Mainz,
[2] Friedrich–Alexander University Erlangen–Nürnberg,undefined
关键词
Genetic programming; Iterative numerical methods; Linear systems; Sparse linear algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce GPLS (Genetic Programming for Linear Systems) as a GP system that finds mathematical expressions defining an iteration matrix. Stationary iterative methods use this iteration matrix to solve a system of linear equations numerically. GPLS aims at finding iteration matrices with a low spectral radius and a high sparsity, since these properties ensure a fast error reduction of the numerical solution method and enable the efficient implementation of the methods on parallel computer architectures. We study GPLS for various types of system matrices and find that it easily outperforms classical approaches like the Gauss–Seidel and Jacobi methods. GPLS not only finds iteration matrices for linear systems with a much lower spectral radius, but also iteration matrices for problems where classical approaches fail. Additionally, solutions found by GPLS for small problem instances show also good performance for larger instances of the same problem.
引用
收藏
页码:253 / 278
页数:25
相关论文
共 50 条
  • [1] Genetic programming for iterative numerical methods
    Sobania, Dominik
    Schmitt, Jonas
    Koestler, Harald
    Rothlauf, Franz
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (02) : 253 - 278
  • [2] Genetic Programming meets Linear Algebra How genetic programming can be used to find improved iterative numerical methods
    Gholami, Reza M.
    Koestler, Harald
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1403 - 1406
  • [3] Numerical experience with iterative methods for equality constrained nonlinear programming problems
    Luksan, L
    Vlcek, J
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2001, 16 (1-4): : 257 - 287
  • [4] Numerical experience with iterative methods for equality constrained nonlinear programming problems
    Lukšan, Ladislav
    Vlček, Jan
    [J]. Optimization Methods and Software, 2002, 16 (1-4) : 257 - 287
  • [5] Special Issue on Integrating numerical optimization methods with genetic programming
    Esparcia-Alcazar, Anna I.
    Trujillo, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (03) : 469 - 470
  • [6] Special Issue on Integrating numerical optimization methods with genetic programming
    Anna I. Esparcia-Alcázar
    Leonardo Trujillo
    [J]. Genetic Programming and Evolvable Machines, 2020, 21 : 469 - 470
  • [7] An iterative genetic programming approach to prototype generation
    Maria Valencia-Ramirez, Jose
    Graff, Mario
    Jair Escalante, Hugo
    Cerda-Jacobo, Jaime
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2017, 18 (02) : 123 - 147
  • [8] Iterative filter generation using genetic programming
    Segond, M
    Robilliard, D
    Fonlupt, C
    [J]. GENETIC PROGRAMMING, PROCEEDINGS, 2006, 3905 : 145 - 153
  • [9] Paradoxical sleep as an iterative genetic programming mechanism
    Jouvet, M
    [J]. MACROMOLECULAR INTERPLAY IN BRAIN ASSOCIATIVE MECHANISMS, 1998, 4 : 295 - 303
  • [10] An iterative genetic programming approach to prototype generation
    José María Valencia-Ramírez
    Mario Graff
    Hugo Jair Escalante
    Jaime Cerda-Jacobo
    [J]. Genetic Programming and Evolvable Machines, 2017, 18 : 123 - 147