Genetic Programming meets Linear Algebra How genetic programming can be used to find improved iterative numerical methods

被引:1
|
作者
Gholami, Reza M. [1 ]
Koestler, Harald [2 ]
机构
[1] FAU Erlangen Nurnberg, MAOT, D-91052 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Comp Sci, Cauerstr 11, D-91058 Erlangen, Germany
关键词
genetic programming; iterative solvers; sparse linear algebra;
D O I
10.1145/3067695.3082502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Iterative schemes play central role in solving large scale simulations in science and engineering. Development of such methods over the past few hundreds of years faces inevitable difficulty of manual design. Herein, we report, for the first time, iterative schemes that are automatically evolved by genetic programming (GP) and outperform the well-known iterative methods. To cope with the diversity of the systems of linear equations, the proposed technique is applied on a sparse system in 1D and 2D domains and on a non-sparse asymmetric system. Our proof-of-principle experiments demonstrate GP evolved schemes that converge up to 4 times faster than the conventional GaussSeidel scheme. Our work paves the way towards automatic design of efficient iterative solvers for large scale systems of linear equations.
引用
收藏
页码:1403 / 1406
页数:4
相关论文
共 19 条
  • [1] Genetic programming for iterative numerical methods
    Sobania, Dominik
    Schmitt, Jonas
    Koestler, Harald
    Rothlauf, Franz
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2022, 23 (02) : 253 - 278
  • [2] Genetic programming for iterative numerical methods
    Dominik Sobania
    Jonas Schmitt
    Harald Köstler
    Franz Rothlauf
    [J]. Genetic Programming and Evolvable Machines, 2022, 23 : 253 - 278
  • [3] Improved representation and genetic operators for linear genetic programming for automated program repair
    Oliveira, Vinicius Paulo L.
    de Souza, Eduardo Faria
    Le Goues, Claire
    Camilo-Junior, Celso G.
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2018, 23 (05) : 2980 - 3006
  • [4] Improved representation and genetic operators for linear genetic programming for automated program repair
    Vinicius Paulo L. Oliveira
    Eduardo Faria de Souza
    Claire Le Goues
    Celso G. Camilo-Junior
    [J]. Empirical Software Engineering, 2018, 23 : 2980 - 3006
  • [5] Special Issue on Integrating numerical optimization methods with genetic programming
    Esparcia-Alcazar, Anna I.
    Trujillo, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2020, 21 (03) : 469 - 470
  • [6] Special Issue on Integrating numerical optimization methods with genetic programming
    Anna I. Esparcia-Alcázar
    Leonardo Trujillo
    [J]. Genetic Programming and Evolvable Machines, 2020, 21 : 469 - 470
  • [7] Linear programming and genetic algorithms methods for creation of groups in networks of excellence
    Guttman, G.
    Shpitalni, M.
    [J]. CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2006, 55 (01) : 143 - 146
  • [8] -LGP: an improved version of linear genetic programming evaluated in the Ant Trail problem
    Dal Piccol Sotto, Leo Francoso
    de Melo, Vinicius Veloso
    Basgalupp, Marcio Porto
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2017, 52 (02) : 445 - 465
  • [9] An improved simplex-genetic method to solve hard linear programming problems
    Frausto-Solis, Juan
    Nieto-Yanez, Alma
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 4, PROCEEDINGS, 2007, 4490 : 981 - +
  • [10] Improved genetic algorithm in discrete variable non-linear programming problems
    He, Da-Kuo
    Wang, Fu-Li
    Mao, Zhi-Zhong
    [J]. Kongzhi yu Juece/Control and Decision, 2006, 21 (04): : 396 - 399