F-Theory;
Differential and Algebraic Geometry;
Conformal and W Symmetry;
Anomalies in Field and String Theories;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background ℝ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \mathbb{R} $$\end{document}5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a “fraction of a hypermultiplet” to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base ℙ2/ℤ3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathrm{\mathbb{P}}}^2/{\mathbb{Z}}_3 $$\end{document}.
机构:
Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
CUNY, Grad Ctr, Initiat Inst Theoret Sci, New York, NY 10016 USAUniv N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
Heckman, Jonathan J.
Rudehus, Tom
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Jefferson Phy Lab, Cambridge, MA 02138 USAUniv N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
机构:
Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USAHarvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
Heckman, Jonathan J.
Morrison, David R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USAHarvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
Morrison, David R.
Vafa, Cumrun
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USAHarvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
机构:
Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USAUniv N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
Apruzzi, Fabio
Heckman, Jonathan J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USAUniv N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
Heckman, Jonathan J.
Rudelius, Tom
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USAUniv N Carolina, Dept Phys, Chapel Hill, NC 27599 USA
机构:
Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, EnglandUniv Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England