6D SCFTs and gravity

被引:0
|
作者
Michele Del Zotto
Jonathan J. Heckman
David R. Morrison
Daniel S. Park
机构
[1] Harvard University,Jefferson Physical Laboratory
[2] University of North Carolina,Department of Physics
[3] University of California,Departments of Mathematics and Physics
[4] Santa Barbara,Simons Center for Geometry and Physics
[5] Stony Brook University,undefined
关键词
F-Theory; Differential and Algebraic Geometry; Conformal and W Symmetry; Anomalies in Field and String Theories;
D O I
暂无
中图分类号
学科分类号
摘要
We study how to couple a 6D superconformal field theory (SCFT) to gravity. In F-theory, the models in question are obtained working on the supersymmetric background ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} $$\end{document}5,1 × B where B is the base of a compact elliptically fibered Calabi-Yau threefold in which two-cycles have contracted to zero size. When the base has orbifold singularities, we find that the anomaly polynomial of the 6D SCFTs can be understood purely in terms of the intersection theory of fractional divisors: the anomaly coefficient vectors are identified with elements of the orbifold homology. This also explains why in certain cases, the SCFT can appear to contribute a “fraction of a hypermultiplet” to the anomaly polynomial. Quantization of the lattice of string charges also predicts the existence of additional light states beyond those captured by such fractional divisors. This amounts to a refinement to the lattice of divisors in the resolved geometry. We illustrate these general considerations with explicit examples, focusing on the case of F-theory on an elliptic Calabi-Yau threefold with base ℙ2/ℤ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{P}}}^2/{\mathbb{Z}}_3 $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] 6D SCFTs and gravity
    Del Zotto, Michele
    Heckman, Jonathan J.
    Morrison, David R.
    Park, Daniel S.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (06): : 1 - 45
  • [2] Strings of Minimal 6d SCFTs
    Haghighat, Babak
    Klemm, Albrecht
    Lockhart, Guglielmo
    Vafa, Cumrun
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (05): : 294 - 322
  • [3] Qubit construction in 6D SCFTs
    Heckman, Jonathan J.
    PHYSICS LETTERS B, 2020, 811
  • [4] Atomic classification of 6D SCFTs
    Heckman, Jonathan J.
    Morrison, David R.
    Rudelius, Tom
    Vafa, Cumrun
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (7-8): : 468 - 530
  • [5] Gauged 2-form symmetries in 6D SCFTs coupled to gravity
    Braun, Andreas P.
    Larfors, Magdalena
    Oehlmann, Paul-Konstantin
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)
  • [6] More on the matter of 6D SCFTs
    Heckman, Jonathan J.
    PHYSICS LETTERS B, 2015, 747 : 73 - 75
  • [7] Gauged 2-form symmetries in 6D SCFTs coupled to gravity
    Andreas P. Braun
    Magdalena Larfors
    Paul-Konstantin Oehlmann
    Journal of High Energy Physics, 2021
  • [8] Top down approach to 6D SCFTs
    Heckman, Jonathan J.
    Rudelius, Tom
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (09)
  • [9] Classifying global symmetries of 6D SCFTs
    Peter R. Merkx
    Journal of High Energy Physics, 2018
  • [10] Fibrations and Hasse diagrams for 6d SCFTs
    Antoine Bourget
    Julius F. Grimminger
    Journal of High Energy Physics, 2022