Computation of the expected volume of a random manifold

被引:0
|
作者
Zaporozhets D.N. [1 ]
机构
[1] St. Petersburg Department, Steklov Mathematical Institute, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
Manifold; Integral Formula; Real Zero; Random Polynomial; Expect Volume;
D O I
10.1007/s10958-006-0037-6
中图分类号
学科分类号
摘要
In this note, we generalize the Kac integral formula for the expected number of real zeros of a random polynomial to the case of systems of equations. © 2006 Springer Science+Business Media, Inc.
引用
收藏
页码:1282 / 1289
页数:7
相关论文
共 50 条
  • [21] Numerical computation of connecting orbits on a manifold
    Liu, Yuanyuan
    Zou, Yongkui
    NUMERICAL ALGORITHMS, 2012, 61 (03) : 429 - 464
  • [22] Expected value operator of random fuzzy variable and random fuzzy expected value models
    Liu, YK
    Liu, BD
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2003, 11 (02) : 195 - 215
  • [23] Random Points on an Algebraic Manifold
    Breiding, Paul
    Marigliano, Orlando
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (03): : 683 - 704
  • [24] Parse forest computation of expected governors
    Schmid, H
    Rooth, M
    39TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, 2001, : 458 - 465
  • [25] WHAT IS EXPECTED VOLUME OF A SIMPLEX WHOSE VERTICES ARE CHOSEN AT RANDOM FROM A GIVEN CONVEX BODY
    KLEE, V
    AMERICAN MATHEMATICAL MONTHLY, 1969, 76 (03): : 286 - &
  • [26] Random dual expected utility
    Wei Ma
    Economic Theory, 2023, 75 : 293 - 315
  • [27] The expected norm of random matrices
    Seginer, Y
    COMBINATORICS PROBABILITY & COMPUTING, 2000, 9 (02): : 149 - 166
  • [28] ON VOLUME ELEMENTS ON A NONCOMPACT MANIFOLD
    CERVERA, V
    MASCARO, F
    SIVERA, R
    DIFFERENTIAL GEOMETRY, 1989, 1410 : 94 - 99
  • [29] On the expected depth of random circuits
    Arya, S
    Golin, MJ
    Mehlhorn, K
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (03): : 209 - 227
  • [30] THE EXPECTED ORDER OF A RANDOM PERMUTATION
    GOH, WMY
    SCHMUTZ, E
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1991, 23 : 34 - 42