共 50 条
CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus
被引:0
|作者:
Amy T. Hark
Christopher J. Schoenherr
David J. Katz
Robert S. Ingram
John M. Levorse
Shirley M. Tilghman
机构:
[1] Howard Hughes Medical Institute and Department of Molecular Biology Princeton University,
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The Insulin-like growth factor 2 (Igf2) and H19 genes are imprinted, resulting in silencing of the maternal and paternal alleles, respectively. This event is dependent upon an imprinted-control region two kilobases upstream of H19 (refs 1, 2). On the paternal chromosome this element is methylated and required for the silencing of H19 (refs 2,3,4). On the maternal chromosome the region is unmethylated and required for silencing of the Igf2 gene 90 kilobases upstream2. We have proposed that the unmethylated imprinted-control region acts as a chromatin boundary that blocks the interaction of Igf2 with enhancers that lie 3′ of H19 (refs 5, 6). This enhancer-blocking activity would then be lost when the region was methylated, thereby allowing expression of Igf2 paternally. Here we show, using transgenic mice and tissue culture, that the unmethylated imprinted-control regions from mouse and human H19 exhibit enhancer-blocking activity. Furthermore, we show that CTCF, a zinc finger protein implicated in vertebrate boundary function7, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking. Consistent with our model, CTCF binding is abolished by DNA methylation. This is the first example, to our knowledge, of a regulated chromatin boundary in vertebrates.
引用
收藏
页码:486 / 489
页数:3
相关论文