Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz

被引:0
|
作者
Cun-quan Qu
Lai-hao Ding
Guang-hui Wang
Gui-ying Yan
机构
[1] Shandong University,School of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
关键词
neighbor sum distinguishing total coloring; Combinatorial Nullstellensatz; neighbor sum distinguishing total choice number; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a graph and ϕ: V ∪E → {1, 2, · · ·, k} be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring ϕ is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv ∈ E(G). We say that ϕ is neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k ≥ Δ(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree Δ(G) and maximum average degree mad(G) has chΣ″(G) ≤ Δ(G) + 3 (where chΣ″(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,m) \in \{ (6,4),(5,\tfrac{{18}} {5}),(4,\tfrac{{16}} {5})\}$$\end{document} such that Δ(G) ≥ k and mad (G) <m.
引用
收藏
页码:537 / 548
页数:11
相关论文
共 50 条
  • [21] Neighbor sum distinguishing total coloring of sparse IC-planar graphs
    Song, Wen-yao
    Miao, Lian-ying
    Li, Jin-bo
    Zhao, Yue-ying
    Pang, Jing-ru
    Discrete Applied Mathematics, 2019, 239 : 183 - 192
  • [22] Neighbor sum distinguishing total coloring of sparse IC-planar graphs
    Song, Wen-yao
    Miao, Lian-ying
    Li, Jin-bo
    Zhao, Yue-ying
    Pang, Jing-ru
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 183 - 192
  • [23] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui WANG
    Bao Jian QIU
    Jian Sheng CAI
    Acta Mathematica Sinica,English Series, 2020, (06) : 673 - 690
  • [24] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui Wang
    Bao Jian Qiu
    Jian Sheng Cai
    Acta Mathematica Sinica, English Series, 2020, 36 : 673 - 690
  • [25] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui WANG
    Bao Jian QIU
    Jian Sheng CAI
    Acta Mathematica Sinica, 2020, 36 (06) : 673 - 690
  • [26] Neighbor Sum Distinguishing Index of Sparse Graphs
    Wang, Ji Hui
    Qiu, Bao Jian
    Cai, Jian Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 673 - 690
  • [27] Anti-magic graphs via the Combinatorial NullStellenSatz
    Hefetz, D
    JOURNAL OF GRAPH THEORY, 2005, 50 (04) : 263 - 272
  • [28] A characterization for the neighbor-distinguishing total chromatic number of planar graphs with Δ=13
    Huo, Jingjing
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2018, 341 (11) : 3044 - 3056
  • [29] Neighbor Sum Distinguishing Total Chromatic Number of Graphs with Lower Average Degree
    Huang, Danjun
    Bao, Dan
    JOURNAL OF MATHEMATICAL STUDY, 2023, 56 (02) : 206 - 218
  • [30] Neighbor sum distinguishing total chromatic number of 2-degenerate graphs
    Xu, Changqing
    Ge, Shan
    Li, Jianguo
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 349 - 352