Neighbor distinguishing total choice number of sparse graphs via the Combinatorial Nullstellensatz

被引:0
|
作者
Cun-quan Qu
Lai-hao Ding
Guang-hui Wang
Gui-ying Yan
机构
[1] Shandong University,School of Mathematics
[2] Chinese Academy of Sciences,Academy of Mathematics and Systems Science
关键词
neighbor sum distinguishing total coloring; Combinatorial Nullstellensatz; neighbor sum distinguishing total choice number; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a graph and ϕ: V ∪E → {1, 2, · · ·, k} be a total-k-coloring of G. Let f(v)(S(v)) denote the sum(set) of the color of vertex v and the colors of the edges incident with v. The total coloring ϕ is called neighbor sum distinguishing if (f(u) ≠ f(v)) for each edge uv ∈ E(G). We say that ϕ is neighbor set distinguishing or adjacent vertex distinguishing if S(u) ≠ S(v) for each edge uv ∈ E(G). For both problems, we have conjectures that such colorings exist for any graph G if k ≥ Δ(G) + 3. The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad (G). In this paper, by using the Combinatorial Nullstellensatz and the discharging method, we prove that these two conjectures hold for sparse graphs in their list versions. More precisely, we prove that every graph G with maximum degree Δ(G) and maximum average degree mad(G) has chΣ″(G) ≤ Δ(G) + 3 (where chΣ″(G) is the neighbor sum distinguishing total choice number of G) if there exists a pair \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,m) \in \{ (6,4),(5,\tfrac{{18}} {5}),(4,\tfrac{{16}} {5})\}$$\end{document} such that Δ(G) ≥ k and mad (G) <m.
引用
收藏
页码:537 / 548
页数:11
相关论文
共 50 条
  • [1] Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz
    Cun-quan QU
    Lai-hao DING
    Guang-hui WANG
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2016, 32 (02) : 537 - 548
  • [2] Neighbor Distinguishing Total Choice Number of Sparse Graphs via the Combinatorial Nullstellensatz
    Qu, Cun-quan
    Ding, Lai-hao
    Wang, Guang-hui
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 537 - 548
  • [3] Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz
    Xiao-wei Yu
    Yu-ping Gao
    Lai-hao Ding
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 135 - 144
  • [4] Neighbor sum distinguishing chromatic index of sparse graphs via the combinatorial Nullstellensatz
    Yu, Xiao-wei
    Gao, Yu-ping
    Ding, Lai-hao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (01): : 135 - 144
  • [5] Neighbor Sum Distinguishing Chromatic Index of Sparse Graphs via the Combinatorial Nullstellensatz
    Xiao-wei YU
    Yu-ping GAO
    Lai-hao DING
    ActaMathematicaeApplicataeSinica, 2018, 34 (01) : 135 - 144
  • [6] Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz
    LaiHao Ding
    GuangHui Wang
    GuiYing Yan
    Science China Mathematics, 2014, 57 : 1875 - 1882
  • [7] Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz
    Ding LaiHao
    Wang GuangHui
    Yan GuiYing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (09) : 1875 - 1882
  • [8] Neighbor sum distinguishing total colorings via the Combinatorial Nullstellensatz
    DING LaiHao
    WANG GuangHui
    YAN GuiYing
    ScienceChina(Mathematics), 2014, 57 (09) : 1875 - 1882
  • [9] Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz
    Ding, Laihao
    Wang, Guanghui
    Wu, Jianliang
    Yu, Jiguo
    GRAPHS AND COMBINATORICS, 2017, 33 (04) : 885 - 900
  • [10] Neighbor Sum (Set) Distinguishing Total Choosability Via the Combinatorial Nullstellensatz
    Laihao Ding
    Guanghui Wang
    Jianliang Wu
    Jiguo Yu
    Graphs and Combinatorics, 2017, 33 : 885 - 900