Correction to: Adaptive random forests for evolving data stream classification

被引:0
|
作者
Heitor M. Gomes
Albert Bifet
Jesse Read
Jean Paul Barddal
Fabrício Enembreck
Bernhard Pfahringer
Geoff Holmes
Talel Abdessalem
机构
[1] Pontifícia Universidade Católica do Paraná,PPGIa
[2] Université Paris-Saclay,LTCI, Télécom ParisTech
[3] École Polytechnique,LIX
[4] University of Waikato,Department of Computer Science
[5] National University of Singapore,UMI CNRS IPAL & School of Computing
来源
Machine Learning | 2019年 / 108卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The Publisher regrets an error in the spelling of the family name of the sixth author. The correct spelling is Bernhard Pfahringer, as it appears in the author list above.
引用
收藏
页码:1877 / 1878
页数:1
相关论文
共 50 条
  • [41] Classification of miRNA Expression Data Using Random Forests for Cancer Diagnosis
    Razak, Eliza
    Yusorf, Faridah
    Raus, Raha Ahmad
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING (ICCCE 2016), 2016, : 187 - 190
  • [42] Soil Classification and Feature Importance of EPBM Data Using Random Forests
    Apoji, Dayu
    Fujita, Yuji
    Soga, Kenichi
    GEO-CONGRESS 2022: DEEP FOUNDATIONS, EARTH RETENTION, AND UNDERGROUND CONSTRUCTION, 2022, 332 : 520 - 528
  • [43] Evolving data-adaptive support vector machines for binary classification
    Dudzik, Wojciech
    Nalepa, Jakub
    Kawulok, Michal
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [44] Evolving Stream Classification using Change Detection
    Mustafa, Ahmad
    Haque, Ahsanul
    Khan, Latifur
    Baron, Michael
    Thuraisingham, Bhavani
    2014 INTERNATIONAL CONFERENCE ON COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING (COLLABORATECOM), 2014, : 154 - 162
  • [45] Exploiting evolving micro-clusters for data stream classification with emerging class detection
    Din, Salah Ud
    Shao, Junming
    INFORMATION SCIENCES, 2020, 507 : 404 - 420
  • [46] SGDOL: Self-evolving Generative and Discriminative Online Learning for Data Stream Classification
    Aggarwal, Deeksha
    Senthilnath, J.
    Kumar, Uttam
    Yadav, Vivek
    Kulkarni, Sushant
    Ferdaus, Md Meftahul
    Li Xiaoli
    21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS ICDMW 2021, 2021, : 322 - 330
  • [47] Data Stream Classification by Adaptive Semi-supervised Fuzzy Clustering
    Castellano, Giovanna
    Fanelli, Anna Maria
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 770 - 771
  • [48] Self-Adaptive Framework for Efficient Stream Data Classification on Storm
    Deng, Shizhuo
    Wang, Botao
    Huang, Shan
    Yue, Chuncheng
    Zhou, Jianpeng
    Wang, Guoren
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (01): : 123 - 136
  • [49] GPU-based State Adaptive Random Forest for Evolving Data Streams
    Wu, Ocean
    Koh, Yun Sing
    Russello, Giovanni
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [50] Random forests for multiclass classification: Random MultiNomial Logit
    Prinzie, Anita
    Van den Poel, Dirk
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 1721 - 1732