Algebraic connectivity of k-connected graphs

被引:0
|
作者
Steve Kirkland
Israel Rocha
Vilmar Trevisan
机构
[1] University of Manitoba,Department of Mathematics
[2] Universidade Federal do Rio Grande do Sul,Instituto de Matemática
来源
关键词
algebraic connectivity; Fiedler vector; 05C50; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a k-connected graph with k ⩾ 2. A hinge is a subset of k vertices whose deletion from G yields a disconnected graph. We consider the algebraic connectivity and Fiedler vectors of such graphs, paying special attention to the signs of the entries in Fielder vectors corresponding to vertices in a hinge, and to vertices in the connected components at a hinge. The results extend those in Fiedler’s papers Algebraic connectivity of graphs (1973), A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory (1975), and Kirkland and Fallat’s paper Perron Components and Algebraic Connectivity for Weighted Graphs (1998).
引用
收藏
页码:219 / 236
页数:17
相关论文
共 50 条
  • [41] Forbidden pairs for k-connected Hamiltonian graphs
    Chen, Guantao
    Egawa, Yoshimi
    Gould, Ronald J.
    Saito, Akira
    DISCRETE MATHEMATICS, 2012, 312 (05) : 938 - 942
  • [42] Clique vectors of k-connected chordal graphs
    Goodarzi, Afshin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 132 : 188 - 193
  • [43] (s, m)-radius of k-connected graphs
    Li, Hao
    Li, Jianping
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1163 - 1177
  • [44] k-Connected Graphs Without K4-
    Li, Xiang-Jun
    ARS COMBINATORIA, 2015, 119 : 353 - 362
  • [45] On the bounds of Laplacian eigenvalues of k-connected graphs
    Xiaodan Chen
    Yaoping Hou
    Czechoslovak Mathematical Journal, 2015, 65 : 701 - 712
  • [46] The Tree of Cuts and Minimal k-Connected Graphs
    Karpov D.V.
    Journal of Mathematical Sciences, 2016, 212 (6) : 654 - 665
  • [47] Contractible Small Subgraphs in k-connected Graphs
    Fujita, Shinya
    Kawarabayashi, Ken-ichi
    GRAPHS AND COMBINATORICS, 2010, 26 (04) : 499 - 511
  • [48] The Hamiltonicity of k-Connected [s, t]-Graphs
    Wang, Jianglu
    Mou, Lei
    ARS COMBINATORIA, 2015, 118 : 407 - 418
  • [49] Characterising k-connected sets in infinite graphs
    Gollin, J. Pascal
    Heuer, Karl
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 157 : 451 - 499
  • [50] DISTRIBUTION OF CONTRACTIBLE EDGES IN K-CONNECTED GRAPHS
    DEAN, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (01) : 1 - 5