On generalized surrogate duality in mixed-integer nonlinear programming

被引:0
|
作者
Benjamin Müller
Gonzalo Muñoz
Maxime Gasse
Ambros Gleixner
Andrea Lodi
Felipe Serrano
机构
[1] Zuse Institute Berlin,CERC
[2] Universidad de O’Higgins,undefined
[3] Polytechnique Montréal,undefined
[4] HTW Berlin and Zuse Institute Berlin,undefined
来源
Mathematical Programming | 2022年 / 192卷
关键词
Surrogate relaxation; MINLP; Nonconvex optimization; 90-08; 90C27; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm’s ability to generate strong dual bounds through extensive computational experiments.
引用
收藏
页码:89 / 118
页数:29
相关论文
共 50 条