Change-point model selection via AIC

被引:0
|
作者
Yoshiyuki Ninomiya
机构
[1] Kyushu University,Institute of Mathematics for Industry
关键词
Brownian motion; Functional central limit theorem; Information criterion; Irregularity; Random walk; Structural change;
D O I
暂无
中图分类号
学科分类号
摘要
Change-point problems have been studied for a long time not only because they are needed in various fields but also because change-point models contain an irregularity that requires an alternative to conventional asymptotic theory. The purpose of this study is to derive the AIC for such change-point models. The penalty term of the AIC is twice the asymptotic bias of the maximum log-likelihood, whereas it is twice the number of parameters, 2p0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2p_0$$\end{document}, in regular models. In change-point models, it is not twice the number of parameters, 2m+2pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2m+2p_m$$\end{document}, because of their irregularity, where m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} and pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_m$$\end{document} are the numbers of the change-points and the other parameters, respectively. In this study, the asymptotic bias is shown to become 6m+2pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6m+2p_m$$\end{document}, which is simple enough to conduct an easy change-point model selection. Moreover, the validity of the AIC is demonstrated using simulation studies.
引用
收藏
页码:943 / 961
页数:18
相关论文
共 50 条