Fixpoint Logics over Hierarchical Structures

被引:0
|
作者
Stefan Göller
Markus Lohrey
机构
[1] Universität Bremen,Fachbereich 3
[2] Universität Leipzig,Institut für Informatik
来源
Theory of Computing Systems | 2011年 / 48卷
关键词
Parity games; -calculus; Hierarchical structures; Model-checking; Complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Hierarchical graph definitions allow a modular description of graphs using modules for the specification of repeated substructures. Beside this modularity, hierarchical graph definitions also allow to specify graphs of exponential size using polynomial size descriptions. In many cases, this succinctness increases the computational complexity of decision problems. In this paper, the model-checking problem for the modal μ-calculus and (monadic) least fixpoint logic on hierarchically defined input graphs is investigated. In order to analyze the modal μ-calculus, parity games on hierarchically defined input graphs are investigated. Precise upper and lower complexity bounds are derived. A restriction on hierarchical graph definitions that leads to more efficient model-checking algorithms is presented.
引用
收藏
页码:93 / 131
页数:38
相关论文
共 50 条
  • [31] Predicate introduction for logics with a fixpoint semantics.: Part I:: Logic programming
    Vennekens, Joost
    Wittocx, Johan
    Marien, Maarten
    Denecker, Marc
    FUNDAMENTA INFORMATICAE, 2007, 79 (1-2) : 187 - 208
  • [32] Fixpoint operators for 2-categorical structures
    Galal, Zeinab
    2023 38TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS, 2023,
  • [33] HIERARCHICAL SEMANTICS FOR RELEVANT LOGICS
    BRADY, RT
    JOURNAL OF PHILOSOPHICAL LOGIC, 1992, 21 (04) : 357 - 374
  • [34] Fragments of Monadic Second-Order Logics Over Word Structures
    Hachaichi, Yassine
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2005, 123 : 111 - 123
  • [35] Verification of definite iteration over hierarchical data structures
    Nepomniaschy, VA
    FUNDAMENTAL APPROACHES TO SOFTWARE ENGINEERING, 1999, 1577 : 176 - 187
  • [36] FPsoLvE: A Generic Solver for Fixpoint Equations Over Semirings
    Esparza, Javier
    Luttenberger, Michael
    Schlund, Maximilian
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2015, 26 (07) : 805 - 825
  • [37] Topological structures in logics
    Gähler, W
    CATEGORICAL STRUCTURES AND THEIR APPLICATIONS, 2004, : 99 - 112
  • [38] Logics and translations for hierarchical model checking
    Kamide, Norihiro
    Yano, Ryu
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 : 31 - 40
  • [39] FPSOLVE: A Generic Solver for Fixpoint Equations over Semirings
    Esparza, Javier
    Luttenberger, Michael
    Schlund, Maximilian
    IMPLEMENTATION AND APPLICATION OF AUTOMATA, CIAA 2014, 2014, 8587 : 1 - 15
  • [40] A Characterisation Theorem for Two-Way Bisimulation-Invariant Monadic Least Fixpoint Logic Over Finite Structures
    Pflueger, Maximilian
    Marti, Johannes
    Kostylev, Egor V.
    PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,