On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator

被引:0
|
作者
Toomas Raus
Uno Hämarik
机构
[1] University of Tartu,Institute of Mathematics
来源
关键词
Ill-posed problem; Regularization method; parameter choice rule; Quasi-optimality; Oracle inequality; 65J20; 47A52; 65J10;
D O I
暂无
中图分类号
学科分类号
摘要
A usual way to characterize the quality of different a posteriori parameter choices is to prove their order-optimality on the different sets of solutions. In paper by Raus and Hämarik (J Inverse Ill-Posed Probl 15(4):419–439, 2007) we introduced the property of the quasi-optimality to characterize the quality of the rule of the a posteriori choice of the regularization parameter for concrete problem Au = f in case of exact operator and discussed the quasi-optimality of different well-known rules for the a posteriori parameter choice as the discrepancy principle, the modification of the discrepancy principle, balancing principle and monotone error rule. In this paper we generalize the concept of the quasi-optimality for the case of a noisy operator and concretize results for the mentioned parameter choice rules.
引用
收藏
页码:221 / 233
页数:12
相关论文
共 50 条
  • [1] On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator
    Raus, Toomas
    Hamarik, Uno
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) : 221 - 233
  • [2] ON THE PRECISION OF TIKHONOV REGULARIZING ALGORITHMS AND ON QUASI-OPTIMAL CHOICE OF THE REGULARIZATION PARAMETER
    LEONOV, AS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1991, 321 (03): : 460 - 465
  • [3] ON THE QUASI-OPTIMAL CHOICE OF REGULARIZATION PARAMETER WHEN SOLVING NON-LINEAR EQUATIONS WITH MONOTONIC OPERATORS
    RYAZANTSEVA, IP
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (06): : 81 - 85
  • [4] QUASI-OPTIMAL CHOICE OF REGULARIZED APPROXIMATION
    TIKHONOV, AN
    GLASKO, VB
    KRIKSIN, IA
    [J]. DOKLADY AKADEMII NAUK SSSR, 1979, 248 (03): : 531 - 535
  • [5] Quasi-optimal compression of noisy optical and radar images
    Lukin, Vladimir V.
    Ponomarenko, Nikolay N.
    Zriakhov, Mikhail S.
    Zelensky, Alexander A.
    Egiazarian, Karen O.
    Astola, Jaakko T.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XII, 2006, 6365
  • [6] A QUASI-OPTIMAL CONTROLLER FOR A DISTRIBUTED PARAMETER PROCESS
    BANOV, AM
    MIKHEEV, YV
    TEMKIN, LS
    [J]. AUTOMATION AND REMOTE CONTROL, 1989, 50 (10) : 1325 - 1332
  • [7] The parameter choice rules for weighted Tikhonov regularization scheme
    G. D. Reddy
    [J]. Computational and Applied Mathematics, 2018, 37 : 2039 - 2052
  • [8] The parameter choice rules for weighted Tikhonov regularization scheme
    Reddy, G. D.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2039 - 2052
  • [9] Comparisons of parameter choice methods for regularization with discrete noisy data
    Lukas, MA
    [J]. INVERSE PROBLEMS, 1998, 14 (01) : 161 - 184
  • [10] Optimal Choice of Regularization Parameter in Image Denoising
    Lucchese, Mirko
    Frosio, Iuri
    Borghese, N. Alberto
    [J]. IMAGE ANALYSIS AND PROCESSING - ICIAP 2011, PT I, 2011, 6978 : 534 - 543