Quasi-optimal compression of noisy optical and radar images

被引:8
|
作者
Lukin, Vladimir V. [1 ]
Ponomarenko, Nikolay N. [1 ]
Zriakhov, Mikhail S. [1 ]
Zelensky, Alexander A. [1 ]
Egiazarian, Karen O. [1 ]
Astola, Jaakko T. [1 ]
机构
[1] Natl Aerosp Univ, UA-61070 Kharkov, Ukraine
关键词
compression; noisy images; blind processing;
D O I
10.1117/12.689557
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
It is often necessary to compress remote sensing (RS) data such as optical or radar images. This is needed for transmitting them via communication channels from satellites and/or for storing in databases for later analysis of, for instance, scene temporal changes. Such images are generally corrupted by noise and this factor should be taken into account while selecting a data compression method and its characteristics, in the particular, compression ratio (CR). In opposite to the case of data transmission via communication channel when the channel capacity can be the crucial factor in selecting the CR, in the case of archiving original remote sensing images the CR can be selected using different criteria. The basic requirement could be to provide such a quality of the compressed images that will be appropriate for further use (interpreting) the images after decompression. In this paper we propose a blind approach to quasi-optimal compression of noisy optical and side look aperture radar images. It presumes that noise variance is either known a priori or pre-estimated using the corresponding automatic tools. Then, it is shown that it is possible (in an automatic manner) to set such a CR that produces an efficient noise reduction in the original images same time introducing minimal distortions to remote sensing data at compression stage. For radar images, it is desirable to apply a homomorphic transform before compression and the corresponding inverse transform after decompression. Real life examples confirming the efficiency of the proposed approach are presented.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A QUASI-OPTIMAL ALGORITHM FOR THE CORRELATIVELY EXTREMAL PROCESSING OF IMAGES
    BEZUGLOV, DA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1990, 33 (08): : 83 - 84
  • [2] On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator
    Toomas Raus
    Uno Hämarik
    [J]. Advances in Computational Mathematics, 2012, 36 : 221 - 233
  • [3] On the quasi-optimal rules for the choice of the regularization parameter in case of a noisy operator
    Raus, Toomas
    Hamarik, Uno
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (02) : 221 - 233
  • [4] QUASI-OPTIMAL SIGNAL PROCESSING IN GROUND FORWARD SCATTERING RADAR
    Hu, Cheng
    Antoniou, Michail
    Cherniakov, Mikhail
    Sizov, Vladimir
    [J]. 2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 725 - +
  • [5] QUASI-OPTIMAL SIGNAL PROCESSING IN GROUND FORWARD SCATTERING RADAR
    Hu, Cheng
    Antoniou, Michail
    Cherniakov, Mikhail
    Sizov, Vladimir
    [J]. 2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 707 - +
  • [6] Quasi-optimal rank algorithm for detecting optical signals
    Stepin, A.P.
    [J]. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika), 1988, 43 (12): : 133 - 136
  • [7] A QUASI-OPTIMAL RANK ALGORITHM FOR DETECTING OPTICAL SIGNALS
    STEPIN, AP
    [J]. TELECOMMUNICATIONS AND RADIO ENGINEERING, 1988, 43 (12) : 133 - 136
  • [8] OPTIMAL AND QUASI-OPTIMAL DESIGNS
    Martins, Joao Paulo
    Mendonca, Sandra
    Pestana, Dinis Duarte
    [J]. REVSTAT-STATISTICAL JOURNAL, 2008, 6 (03) : 279 - 307
  • [9] QUASI-OPTIMAL FILTERS FOR THE COMPRESSION OF COMPLEX LINEAR FREQUENCY MODULATED SIGNALS
    PADALKO, OA
    BOLSHESHAPOV, IG
    MARCHISHIN, MY
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1991, 34 (04): : 80 - 83
  • [10] Asymptotically Quasi-Optimal Cryptography
    de Castro, Leo
    Hazay, Carmit
    Ishai, Yuval
    Vaikuntanathan, Vinod
    Venkitasubramaniam, Muthu
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 303 - 334