共 50 条
Global Behavior of 1d-Viscous Compressible Barotropic Fluid with a Free Boundary and Large Data
被引:0
|作者:
I. Straškraba
A. Zlotnik
机构:
[1] Mathematical Institute,
[2] Academy of Sciences,undefined
[3] Žitná 25,undefined
[4] 115 67 Praha 1,undefined
[5] Czech Republic. E-mail: strask@math.cas.cz,undefined
[6] Department of Mathematical Modelling,undefined
[7] Moscow Power Engineering Institute,undefined
[8] Krasnokazarmennaja 14,undefined
[9] 111250 Moscow,undefined
[10] Russia. E-mail: zlotnik@apmsun.mpei.ac.ru,undefined
来源:
关键词:
Mathematics Subject Classification (2000). 76N10, 35R35, 35B40.¶Keywords. Navier-Stokes equations, compressible fluid, free boundary, global estimates, asymptotic behavior, stabilization rate estimates, Lyapunov functionals.;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In the Eulerian coordinates we study 1D-flow of a viscous compressible barotropic fluid with an unknown free boundary for large initial data and mass force. Under fairly general conditions on the pressure function, viscosity coefficient, and a relation between the mass force and outer pressure we give the uniform with respect to time bounds for the solution and study its convergence to a stationary one as time tends to infinity. Moreover, in the case of uniquely defined stationary solution with strictly positive density we prove \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$L^{2}$\end{document}- and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$H^{1}$\end{document}-stabilization rate estimates by constructing new Lyapunov functionals.
引用
收藏
页码:119 / 143
页数:24
相关论文