Global Behavior of 1d-Viscous Compressible Barotropic Fluid with a Free Boundary and Large Data

被引:0
|
作者
I. Straškraba
A. Zlotnik
机构
[1] Mathematical Institute,
[2] Academy of Sciences,undefined
[3] Žitná 25,undefined
[4] 115 67 Praha 1,undefined
[5] Czech Republic. E-mail: strask@math.cas.cz,undefined
[6] Department of Mathematical Modelling,undefined
[7] Moscow Power Engineering Institute,undefined
[8] Krasnokazarmennaja 14,undefined
[9] 111250 Moscow,undefined
[10] Russia. E-mail: zlotnik@apmsun.mpei.ac.ru,undefined
关键词
Mathematics Subject Classification (2000). 76N10, 35R35, 35B40.¶Keywords. Navier-Stokes equations, compressible fluid, free boundary, global estimates, asymptotic behavior, stabilization rate estimates, Lyapunov functionals.;
D O I
暂无
中图分类号
学科分类号
摘要
In the Eulerian coordinates we study 1D-flow of a viscous compressible barotropic fluid with an unknown free boundary for large initial data and mass force. Under fairly general conditions on the pressure function, viscosity coefficient, and a relation between the mass force and outer pressure we give the uniform with respect to time bounds for the solution and study its convergence to a stationary one as time tends to infinity. Moreover, in the case of uniquely defined stationary solution with strictly positive density we prove \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}- and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-stabilization rate estimates by constructing new Lyapunov functionals.
引用
收藏
页码:119 / 143
页数:24
相关论文
共 50 条