Unstable extremal surfaces of the “Shiffman functional” spanning rectifiable boundary curves

被引:0
|
作者
Ruben Jakob
机构
[1] Mathematisches Institut der ETH zürich,
关键词
Jordan Curve; Isoperimetric Inequality; Mountain Pass; Extremal Surface; Mountain Pass Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a sufficient condition for the existence of extremal surfaces of a parametric functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document} with a dominant area term, which do not furnish global minima of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document} within the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}^*(\Gamma )$$\end{document} of H1,2-surfaces spanning an arbitrary closed rectifiable Jordan curve \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma\subset \mathbb{R}^3$$\end{document} that merely has to satisfy a chord-arc condition. The proof is based on the “mountain pass result” of (Jakob in Calc Var 21:401–427, 2004) which yields an unstable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{J}$$\end{document}-extremal surface bounded by an arbitrary simple closed polygon and Heinz’ ”approximation method” in (Arch Rat Mech Anal 38:257–267, 1970). Hence, we give a precise proof of a partial result of the mountain pass theorem claimed by Shiffman in (Ann Math 45:543–576, 1944) who only outlined a very sketchy and partially incorrect proof.
引用
收藏
页码:383 / 409
页数:26
相关论文
共 50 条