In this paper we derive a sufficient condition for the existence of extremal surfaces of a parametric functional
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{J}$$\end{document} with a dominant area term, which do not furnish global minima of
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{J}$$\end{document} within the class
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{C}^*(\Gamma )$$\end{document} of H1,2-surfaces spanning an arbitrary closed rectifiable Jordan curve
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Gamma\subset \mathbb{R}^3$$\end{document} that merely has to satisfy a chord-arc condition. The proof is based on the “mountain pass result” of (Jakob in Calc Var 21:401–427, 2004) which yields an unstable
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{J}$$\end{document}-extremal surface bounded by an arbitrary simple closed polygon and Heinz’ ”approximation method” in (Arch Rat Mech Anal 38:257–267, 1970). Hence, we give a precise proof of a partial result of the mountain pass theorem claimed by Shiffman in (Ann Math 45:543–576, 1944) who only outlined a very sketchy and partially incorrect proof.