CMAS-Resistant Plasma Sprayed Thermal Barrier Coatings Based on Y2O3-Stabilized ZrO2 with Al3+ and Ti4+ Solute Additions

被引:0
|
作者
Bilge S. Senturk
Hector F. Garces
Angel L. Ortiz
Gopal Dwivedi
Sanjay Sampath
Nitin P. Padture
机构
[1] Brown University,School of Engineering
[2] Universidad de Extremadura,Departamento de Ingeniería Mecánica, Energética y de los Materiales
[3] Stony Brook University,Center for Thermal Spray Research, Department of Materials Science and Engineering
来源
关键词
anorthite; air plasma spray; CMAS; powders; thermal barrier coatings; zirconia;
D O I
暂无
中图分类号
学科分类号
摘要
The higher operating temperatures in gas-turbine engines made possible by thermal barrier coatings (TBCs) are engendering a new problem: environmentally ingested airborne silicate particles (sand, ash) melt on the hot TBC surfaces and form calcium-magnesium-alumino-silicate (CMAS) glass deposits. The molten CMAS glass degrades the TBCs, leading to their premature failure. Here, we demonstrate the use of a commercially manufactured feedstock powder, in conjunction with air plasma spray process, to deposit CMAS-resistant yttria-stabilized zirconia-based TBCs containing Al3+ and Ti4+ in solid solution. Results from the characterization of these new TBCs and CMAS/TBCs interaction experiments are presented. The CMAS mitigation mechanisms in these new TBCs involve the crystallization of the anorthite phase. Raman microscopy is used to generate large area maps of the anorthite phase in the CMAS-interacted TBCs demonstrating the potential usefulness of this method for studying CMAS/TBCs interactions. The ubiquity of airborne sand/ash particles and the ever-increasing demand for higher operating temperatures in future high efficiency gas-turbine engines will necessitate CMAS resistance in all hot-section components of those engines. In this context, the versatility, ease of processing, and low cost offered by the process demonstrated here could benefit the development of these new CMAS-resistant TBCs.
引用
收藏
页码:708 / 715
页数:7
相关论文
共 50 条
  • [21] Low-temperature stiffening of air plasma-sprayed 7 wt% Y2O3-stabilized ZrO2
    Lal, Devi
    Kumar, Praveen
    Sampath, Sanjay
    Jayaram, Vikram
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2020, 103 (03) : 2076 - 2089
  • [22] DEPOSITION OF ZRO2 AND Y2O3-STABILIZED ZRO2 FROM BETA-DIKETONATES
    PULVER, M
    WAHL, G
    SCHEYTT, H
    SOMMER, M
    JOURNAL DE PHYSIQUE IV, 1993, 3 (C3): : 305 - 312
  • [23] Comparative study on corrosion behavior of plasma sprayed Al2O3, ZrO2, Al2O3/ZrO2 and ZrO2/Al2O3 coatings
    Sathish, S.
    Geetha, M.
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2016, 26 (05) : 1336 - 1344
  • [24] MORPHOLOGY OF TETRAGONAL PRECIPITATES IN Y2O3-STABILIZED ZRO2 CRYSTALS
    BAITHER, D
    BAUFELD, B
    MESSERSCHMIDT, U
    PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1993, 137 (02): : 569 - 576
  • [25] HIGH-TEMPERATURE CREEP OF Y2O3-STABILIZED ZRO2
    SELTZER, MS
    TALTY, PK
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1975, 58 (3-4) : 124 - 130
  • [26] HYDROTHERMAL GROWTH OF Y2O3-STABILIZED CUBIC ZRO2 CRYSTALS
    NAKAMURA, K
    HIRANO, SI
    SOMIYA, S
    AMERICAN CERAMIC SOCIETY BULLETIN, 1977, 56 (05): : 513 - +
  • [27] Chemical surface exchange of oxygen on Y2O3-stabilized ZrO2
    Sasaki, K
    Maier, J
    SOLID STATE IONICS, 2003, 161 (1-2) : 145 - 154
  • [28] LATTICE-PARAMETERS AND DENSITY FOR Y2O3-STABILIZED ZRO2
    INGEL, RP
    LEWIS, D
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1986, 69 (04) : 325 - 332
  • [29] DETERMINATION OF DENSITY OF TRAP STATES AT Y2O3-STABILIZED ZRO2/SI INTERFACE OF YBA2CU3O7-DELTA/Y2O3-STABILIZED ZRO2/SI CAPACITORS
    QIAO, JM
    WANG, KS
    YANG, CY
    APPLIED PHYSICS LETTERS, 1994, 64 (13) : 1732 - 1734
  • [30] Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings
    Limarga, AM
    Widjaja, S
    Yip, TH
    SURFACE & COATINGS TECHNOLOGY, 2005, 197 (01): : 93 - 102