On the geometry of the slice of trace-free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{SL_2(\mathbb{C})}}$$\end{document}-characters of a knot group

被引:0
|
作者
Fumikazu Nagasato
Yoshikazu Yamaguchi
机构
[1] Meijo University,Department of Mathematics
[2] Tokyo Institute of Technology,Department of Mathematics
关键词
57M27; 57M05; 57M12;
D O I
10.1007/s00208-011-0754-0
中图分类号
学科分类号
摘要
Let K be a knot in an integral homology 3-sphere Σ with exterior EK, and let B2 denote the two-fold branched cover of Σ branched along K. We construct a map Φ from the slice of trace-free \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm SL}_2(\mathbb{C})}}$$\end{document} -characters of π1(EK) to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm SL}_2(\mathbb{C})}}$$\end{document}-character variety of π1(B2). When this map is surjective, it describes the slice as the two-fold branched cover over the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm SL}_2(\mathbb{C})}}$$\end{document}-character variety of B2 with branched locus given by the abelian characters, whose preimage is precisely the set of metabelian characters. We show that each metabelian character can be represented as the character of a binary dihedral representation of π1(EK). The map Φ is shown to be surjective for all 2-bridge knots and all pretzel knots of type (p, q, r). An extension of this framework to n-fold branched covers is also described.
引用
收藏
页码:967 / 1002
页数:35
相关论文
共 50 条