Coupled Meir–Keeler Type Contraction in Metric Spaces with an Application to Partial Metric Spaces

被引:2
|
作者
Choudhury B.S. [1 ]
Bandyopadhyay C. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal
关键词
Coupled fixed point; Coupled generalized Meir–Keeler contraction; Metric space; Partial metric space; T[!sub]0[!/sub]-space;
D O I
10.1007/s10013-016-0186-y
中图分类号
学科分类号
摘要
In this paper, we prove a Meir–Keeler type coupled fixed point results in metric spaces. We make an application of our result to obtain a corresponding result in partial metric spaces. The latter are generalizations of metric spaces having a T0-topology in general and admitting non-zero measures of self distances. It is only under special circumstances that the results obtained in metric spaces can be extended to partial metric spaces. Here, we show that the result we obtain in metric spaces can be applied to obtain similar fixed point result in partial metric spaces. Two illustrative examples are given one each for the metric spaces and partial metric spaces. © 2016, Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore.
引用
收藏
页码:623 / 636
页数:13
相关论文
共 50 条
  • [21] On cyclic Meir-Keeler contractions in metric spaces
    Piatek, Bozena
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (01) : 35 - 40
  • [22] Meir-Keeler theorems in fuzzy metric spaces
    Zheng, Dingwei
    Wang, Pei
    FUZZY SETS AND SYSTEMS, 2019, 370 : 120 - 128
  • [23] Coupled fixed point theorem for generalized fuzzy meir-keeler contraction in fuzzy metric spaces
    Gordji, M. Eshaghi
    Ghods, S.
    Ghods, V.
    Hadian, M.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (02) : 271 - 277
  • [24] Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces
    Samet, Bessem
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4508 - 4517
  • [25] (α - ψ) Meir-Keeler Contractions in Bipolar Metric Spaces
    Kumar, Manoj
    Kumar, Pankaj
    Ramaswamy, Rajagopalan
    Abdelnaby, Ola A. Ashour
    Elsonbaty, Amr
    Radenovic, Stojan
    MATHEMATICS, 2023, 11 (06)
  • [26] On the Meir–Keeler theorem in quasi-metric spaces
    Mecheraoui Rachid
    Zoran D. Mitrović
    Vahid Parvaneh
    Zohreh Bagheri
    Journal of Fixed Point Theory and Applications, 2021, 23
  • [27] Extension of Meir-Keeler-Khan (ψ - α) Type Contraction in Partial Metric Space
    Singh, Dimple
    Goel, Priya
    Behl, Ramandeep
    Sarria, Inigo
    AXIOMS, 2024, 13 (09)
  • [28] Generalized α -Meir-Keeler Contraction Mappings on Branciari b-metric Spaces
    Gulyaz, Selma
    Karapinar, Erdal
    Erhan, Inci M.
    FILOMAT, 2017, 31 (17) : 5445 - 5456
  • [29] Interpolative Meir-Keeler Mappings in Modular Metric Spaces
    Karapinar, Erdal
    Fulga, Andreea
    Yesilkaya, Seher Sultan
    MATHEMATICS, 2022, 10 (16)
  • [30] The Meir-Keeler type contractions in extended modular b-metric spaces with an application
    Gholidahneh, Abdolsattar
    Sedghi, Shaban
    Ege, Ozgur
    Mitrovic, Zoran D.
    de la Sen, Manuel
    AIMS MATHEMATICS, 2021, 6 (02): : 1781 - 1799