On the Third-Order Jacobsthal and Third-Order Jacobsthal–Lucas Sequences and Their Matrix Representations

被引:0
|
作者
Gamaliel Cerda-Morales
机构
[1] Pontificia Universidad Católica de Valparaíso,Instituto de Matemáticas
来源
关键词
Generalized Fibonacci number; third-order Jacobsthal number; third-order Jacobsthal–Lucas number; matrix representation; matrix methods; generalized Jacobsthal number; 11B37; 11B39; 15A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first give new generalizations for third-order Jacobsthal {Jn(3)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{J_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} and third-order Jacobsthal–Lucas {jn(3)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{j_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} sequences for Jacobsthal and Jacobsthal–Lucas numbers. Considering these sequences, we define the matrix sequences which have elements of {Jn(3)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{J_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} and {jn(3)}n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{j_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document}. Then, we investigate their properties.
引用
下载
收藏
相关论文
共 50 条
  • [21] A reliable technique for solving Third-order dispersion third-order dispersion equations
    Lesnic, D.
    KYBERNETES, 2007, 36 (5-6) : 697 - 708
  • [22] THE EXPONENTIAL REPRESENTATIONS OF JACOBSTHAL MATRIX SEQUENCES
    Uygun, Sukran
    Owusu, Evans
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (05): : 140 - 146
  • [23] Integration sequences of Jacobsthal and Jacobsthal-Lucas polynomials
    Filipponi, P
    Horadam, AF
    APPLICATIONS OF FIBONACCI NUMBERS, VOL 8, 1999, : 129 - 139
  • [24] Derivative sequences of Jacobsthal and Jacobsthal-Lucas polynomials
    Horadam, AF
    Filipponi, P
    FIBONACCI QUARTERLY, 1997, 35 (04): : 352 - 357
  • [25] Third-order depositional sequences reflecting Milankovitch cyclicity
    Strasser, A
    Hillgärtner, H
    Hug, W
    Pittet, B
    TERRA NOVA, 2000, 12 (06) : 303 - 311
  • [26] GENERATING FUNCTIONS FOR POWERS OF THIRD-ORDER RECURRENCE SEQUENCES
    SHANNON, AG
    HORADAM, AF
    DUKE MATHEMATICAL JOURNAL, 1971, 38 (04) : 791 - &
  • [27] On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences
    Boulila, Slah
    Galbrun, Bruno
    Miller, Kenneth G.
    Pekar, Stephen F.
    Browning, James V.
    Laskar, Jacques
    Wright, James D.
    EARTH-SCIENCE REVIEWS, 2011, 109 (3-4) : 94 - 112
  • [28] Third-order boost converter
    Veerachary, Mummadi
    IET POWER ELECTRONICS, 2018, 11 (03) : 566 - 575
  • [29] A simple third-order recurrence
    Lord, G
    FIBONACCI QUARTERLY, 1998, 36 (01): : 87 - 87
  • [30] On a nonlinear third-order equation
    Aristov, A. I.
    MATHEMATICAL NOTES, 2017, 102 (1-2) : 3 - 11