In this paper, we first give new generalizations for third-order Jacobsthal {Jn(3)}n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{J_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} and third-order Jacobsthal–Lucas {jn(3)}n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{j_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} sequences for Jacobsthal and Jacobsthal–Lucas numbers. Considering these sequences, we define the matrix sequences which have elements of {Jn(3)}n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{J_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document} and {jn(3)}n∈N\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\{j_{n}^{(3)}\}_{n\in \mathbb {N}}$$\end{document}. Then, we investigate their properties.
机构:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, ChileInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, Valparaíso, Chile