Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response

被引:0
|
作者
S. G. Chankova
E. Dimova
M. Dimitrova
P. E. Bryant
机构
[1] Central Laboratory of General Ecology-BAS,Bute Medical School
[2] University of St Andrews,undefined
来源
关键词
Zeocin; Radiomimetic; Gamma rays; Genotoxicity; Adaptive response; DSB;
D O I
暂无
中图分类号
学科分类号
摘要
This study aimed to test the potential of the radiomimetic chemical zeocin to induce DNA double-strand breaks (DSB) and “adaptive response” (AR) in Chlamydomonas reinhardtii strain CW15 as a model system. The AR was measured as cell survival using a micro-colony assay, and by changes in rejoining of DSB DNA. The level of induced DSB was measured by constant field gel electrophoresis based on incorporation of cells into agarose blocks before cell lysis. This avoids the risk of accidental induction of DSB during the manipulation procedures. Our results showed that zeocin could induce DSB in C. reinhardtii strain CW15 in a linear dose-response fashion up to 100 μg ml−1 which marked the beginning of a plateau. The level of DSB induced by 100 μg ml−1 zeocin was similar to that induced by 250 Gy of gamma-ray irradiation. It was also found that, similar to gamma rays, zeocin could induce AR measured as DSB in C. reinhardtii CW15 and this AR involved acceleration of the rate of DSB rejoining, too. To our knowledge, this is the first demonstration that zeocin could induce AR in some low eukaryotes such as C. reinhardtii.
引用
收藏
页码:409 / 416
页数:7
相关论文
共 50 条
  • [32] DNA double-strand breaks and cellular senescence
    Sedelnikova, OA
    Horikawa, I
    Filipski, MJ
    Redon, CE
    Pilch, DR
    Newrock, KM
    Bonner, WM
    Barrett, JC
    MOLECULAR BIOLOGY OF THE CELL, 2002, 13 : 441A - 441A
  • [33] DNA Double-Strand Breaks Come into Focus
    Hopfner, Karl-Peter
    CELL, 2009, 139 (01) : 25 - 27
  • [34] REPAIR OF DOUBLE-STRAND DNA BREAKS IN DROSOPHILA
    DEZZANI, W
    HARRIS, PV
    BOYD, JB
    MUTATION RESEARCH, 1982, 92 (1-2): : 151 - 160
  • [35] The ubiquitin landscape at DNA double-strand breaks
    Messick, Troy E.
    Greenberg, Roger A.
    JOURNAL OF CELL BIOLOGY, 2009, 187 (03): : 319 - 326
  • [36] Regulation and repair of double-strand DNA breaks
    Weaver, DT
    CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 1996, 6 (04): : 345 - 375
  • [37] High salt and DNA double-strand breaks
    Redon, Christophe E.
    Bonner, William M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (51) : 20281 - 20282
  • [38] DNA double-strand breaks induced by γ-ray
    Zhou, Guangming
    Li, Wenjian
    Wang, Jufang
    He, Jing
    Gao, Qingxiang
    Chen, Wei
    Wei, Zengquan
    He Jishu/Nuclear Techniques, 2000, 23 (11): : 776 - 779
  • [39] The cellular control of DNA double-strand breaks
    Scott, Shaun P.
    Pandita, Tej K.
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2006, 99 (06) : 1463 - 1475
  • [40] Nucleolar responses to DNA double-strand breaks
    Larsen, Dorthe Helena
    Stucki, Manuel
    NUCLEIC ACIDS RESEARCH, 2016, 44 (02) : 538 - 544