Centrally symmetric generators in toric Fano varieties

被引:0
|
作者
Cinzia Casagrande
机构
[1] Università di Roma ``La Sapienza'',Dipartimento di Matematica
来源
manuscripta mathematica | 2003年 / 111卷
关键词
Structure Theorem; Fano Variety; Symmetric Generator; Toric Fano Variety; Symmetric Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
We give a structure theorem for n-dimensional smooth toric Fano varieties whose associated polytope has ``many'' pairs of centrally symmetric vertices.
引用
收藏
页码:471 / 485
页数:14
相关论文
共 50 条
  • [41] Einstein-Kahler metrics on symmetric toric Fano manifolds
    Batyrev, VV
    Selivanova, EN
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 512 : 225 - 236
  • [42] BOUNDS ON THE PICARD RANK OF TORIC FANO VARIETIES WITH MINIMAL CURVE CONSTRAINTS
    Beheshti, R.
    Wormleighton, B.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 1503 - 1518
  • [43] Rigid Gorenstein toric Fano varieties arising from directed graphs
    Selvi Kara
    Irem Portakal
    Akiyoshi Tsuchiya
    Collectanea Mathematica, 2023, 74 : 333 - 351
  • [44] Conifold degenerations of Fano 3-folds as hypersurfaces in toric varieties
    Batyrev, Victor
    Kreuzer, Maximilian
    STRINGS, GAUGE FIELDS, AND THE GEOMETRY BEHIND: THE LEGACY OF MAXIMILIAN KREUZER, 2013, : 187 - 212
  • [45] Circle actions, quantum cohomology, and the Fukaya category of Fano toric varieties
    Ritter, Alexander F.
    GEOMETRY & TOPOLOGY, 2016, 20 (04) : 1941 - 2052
  • [46] Rigid Gorenstein toric Fano varieties arising from directed graphs
    Kara, Selvi
    Portakal, Irem
    Tsuchiya, Akiyoshi
    COLLECTANEA MATHEMATICA, 2023, 74 (02) : 333 - 351
  • [47] Q-FACTORIAL GORENSTEIN TORIC FANO VARIETIES WITH LARGE PICARD NUMBER
    Nill, Benjamin
    Obro, Mikkel
    TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (01) : 1 - 15
  • [48] Families of Calabi-Yau hypersurfaces in Q-Fano toric varieties
    Artebani, Michela
    Comparin, Paola
    Guilbot, Robin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02): : 319 - 341
  • [49] Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties
    Tyurin, Nikolai A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (01) : 267 - 280
  • [50] Monotonic Lagrangian Tori of Standard and Nonstandard Types in Toric and Pseudotoric Fano Varieties
    Nikolai A. Tyurin
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 267 - 280