Arithmetic behaviour of Hecke eigenvalues of Siegel cusp forms of degree two

被引:0
|
作者
Sanoli Gun
Winfried Kohnen
Biplab Paul
机构
[1] Homi Bhabha National Institute,Institute of Mathematical Sciences
[2] Ruprecht-Karls-Universität Heidelberg,Mathematisches Institut
[3] Kyushu University,Faculty of Mathematics
来源
The Ramanujan Journal | 2021年 / 54卷
关键词
Siegel modular forms; Hecke eigenvalues; Multiplicity one theorem; Simultaneous non-vanishing; 11F46;
D O I
暂无
中图分类号
学科分类号
摘要
Let F and G be Siegel cusp forms for Sp4(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Sp}}_4({{\mathbb {Z}}})$$\end{document} and weights k1,k2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k_1, k_2$$\end{document}, respectively. Also let F and G be Hecke eigenforms lying in distinct eigen spaces. Further suppose that neither F nor G is a Saito–Kurokawa lift. In this article, we study simultaneous arithmetic behaviour of Hecke eigenvalues of these Hecke eigenforms.
引用
收藏
页码:43 / 62
页数:19
相关论文
共 50 条