Factor analysis and mechanism disclosure of supercritical CO2 filtration behavior in tight shale reservoirs

被引:0
|
作者
Qiang Li
Yanling Wang
Fuling Wang
Xu Ning
Zhang Chuanbao
Jinyan Zhang
Chenglin Zhang
机构
[1] Heilongjiang Bayi Agricultural University,College of Science
[2] China University of Petroleum (East China),College of Petroleum Engineering
[3] China University of Petroleum (East China),College of Science, College of Materials Science and Engineering
关键词
CO; fracturing technology; CO; thickener; Tight shale; Reservoir transformation; Filtration control; Shale oil development;
D O I
暂无
中图分类号
学科分类号
摘要
As an important working fluid in tight shale reservoir, supercritical CO2 has been proven to improve oil recovery efficiently. However, the high filtration caused by the low viscosity of pure supercritical CO2 hinders its development. The research objective of this investigation is to explore the filtration of supercritical CO2 with a branched siloxane (BTMT) as a CO2 thickener and filtration-reducing agent, and analyze the influence level of some parameters about rock core and chemicals on the CO2 filtration in the tight shale reservoir by using response surface method (RSM). The results demonstrate that the rising temperature causes a gradually increasing filtration, but filtration coefficient (f) decreases with increasing the pressure difference P, injection speed, and thickener concentration. The thickener concentration is the factor that causes the greatest change in filtration coefficient according to the response surface method, and the injection speed has the smallest effect on the filtration. The viscosity of fracturing fluid is the main characterization parameter leading to change of filtration coefficient, all factors that contribute to increasing the viscosity of the fracturing fluid will lead to a reduction in the filtration coefficient and an enhanced oil recovery. In addition, the adsorption and reservoir residue of BTMT on low-permeability shale were subordinated to a Langmuir monolayer theory, and a low residual of BTMT in shale can prevent thickeners and fracturing fluids from damaging shale reservoirs. The improvement of thickener and CO2 fracturing technology provided a basic reference for shale exploitation, greenhouse effect, and reservoir protection.
引用
收藏
页码:17682 / 17694
页数:12
相关论文
共 50 条
  • [41] Will the future of shale reservoirs lie in CO2 geological sequestration?
    ZHAN Jie
    CHEN ZhangXin
    ZHANG Ying
    ZHENG ZiGang
    DENG Qi
    Science China(Technological Sciences), 2020, 63 (07) : 1154 - 1163
  • [42] Review of CO2 Fracturing and Carbon Storage in Shale Reservoirs
    Han, Lei
    Shi, Xian
    Ni, Hongjian
    Zhang, Weidong
    Gao, Qi
    ENERGY & FUELS, 2024, 38 (17) : 15913 - 15934
  • [43] Will the future of shale reservoirs lie in CO2 geological sequestration?
    Jie Zhan
    ZhangXin Chen
    Ying Zhang
    ZiGang Zheng
    Qi Deng
    Science China Technological Sciences, 2020, 63 : 1154 - 1163
  • [44] Reassessment of CO2 sequestration in tight reservoirs and associated formations
    Ozotta, Ogochukwu
    Ostadhassan, Mehdi
    Liu, Kouqi
    Liu, Bo
    Kolawole, Oladoyin
    Hadavimoghaddam, Fahimeh
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 206
  • [45] Analysis of Dry CO2 Fracturing Technology for Efficient Development of Shale Gas Reservoirs
    Luo, Xiangrong
    Wang, Shuzhong
    Jing, Zefeng
    Xu, Guixi
    PROCEEDINGS OF THE 2016 5TH INTERNATIONAL CONFERENCE ON MEASUREMENT, INSTRUMENTATION AND AUTOMATION (ICMIA 2016), 2016, 138 : 30 - 33
  • [46] Adsorption behavior and mechanism analysis of siloxane thickener for CO2 fracturing fluid on shallow shale soil
    Li, Qiang
    Wang, Fuling
    Wang, Yanling
    Bai, Baojun
    Zhang, Jinyan
    Lili, Cao
    Sun, Quan
    Wang, Yong
    Forson, Kobina
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 376
  • [47] Adsorption Kinetic Behavior of Gaseous and Supercritical CO2 in the Near-Critical Region on Shale
    Gu, Min
    Qing, Xi
    Tang, Xiaoyang
    Zhuo, Tingyu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (34) : 12359 - 12368
  • [48] Supercritical CO2 fracturing with different drilling depths in shale
    Yang, Hongwei
    Zhao, Yuan
    Zhang, Xinghua
    Liu, Guojun
    Du, Xidong
    Shang, Delei
    Yu, Yongjun
    Chen, Juan
    Wang, Hui
    Tu, Huaijian
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (04) : 10603 - 10622
  • [49] Effect of supercritical CO2 on alteration of tensile strength of shale
    Tian S.
    Zhou J.
    Xian X.
    Dong Z.
    Zheng Y.
    Deng G.
    Zhang P.
    Meitan Xuebao/Journal of the China Coal Society, 2023, 48 (07): : 2728 - 2736
  • [50] Permeability Evolution of Fractures in Shale in the Presence of Supercritical CO2
    Hashemi, Sam S.
    Zoback, Mark D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2021, 126 (08)