Multiplicative type functional equations arising from characterization problems

被引:0
|
作者
Károly Lajkó
Fruzsina Mészáros
机构
[1] College of Nyíregyháza,Institute of Mathematics and Computer Science
[2] University of Debrecen,Institute of Mathematics
来源
Aequationes mathematicae | 2012年 / 83卷
关键词
39B22; General solution; Density function solution a.e.;
D O I
暂无
中图分类号
学科分类号
摘要
We give the general and the so-called density function solutions of equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{lll}f_{U}(x)f_{V}(y)=f_{X}\left(\frac{1-y}{1-xy} \right) f_{Y} (1-xy) \frac{y}{1-xy} \qquad \left( (x, y) \in (0,1)^2 \right)\end{array}$$\end{document}and the density function solutions of equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{lll}f \left(x \right)g\left(y \right)=p\left(x+y\right)q\left( \frac{x}{y} \right) \qquad \left((x, y)\in \mathbb{R}^{2}_{+} \right).\end{array}$$\end{document}
引用
收藏
页码:199 / 208
页数:9
相关论文
共 50 条