Fractional nonlinear Schrödinger equation

被引:0
|
作者
Jesus A. Mendez-Navarro
Pavel I. Naumkin
Isahi Sánchez-Suárez
机构
[1] UNAM Campus Morelia,Centro de Ciencias Matemáticas
[2] Universidad Politécnica de Uruapan,undefined
关键词
Nonlinear Schrödinger equation; Dispersive equations; Scattering theory; Decay estimates; 35B40; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the fractional nonlinear Schrödinger equation i∂tu+23∂x32u=λu2u,t>0,x∈R,u1,x=u0x,x∈R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} i\partial _{t}u+\frac{2}{3}\left| \partial _{x}\right| ^{\frac{3}{2} }u=\lambda \left| u\right| ^{2}u,\,\, t>0, &{}\quad x\in \mathbb {R},\\ u\left( 1,x\right) =u_{0}\left( x\right) ,&{}\quad x\in \mathbb {R}. \end{array}\right. \end{aligned}$$\end{document}We develop the factorization technique to obtain the large-time asymptotic behavior of solutions which has a logarithmic phase modifications for large time comparing with the linear problem.
引用
收藏
相关论文
共 50 条
  • [31] Optical dromions for perturbed fractional nonlinear Schrödinger equation with conformable derivatives
    S. T. R. Rizvi
    Aly R. Seadawy
    M. Younis
    N. Ahmad
    S. Zaman
    Optical and Quantum Electronics, 2021, 53
  • [32] Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative
    Kolade M. Owolabi
    Abdon Atangana
    The European Physical Journal Plus, 131
  • [33] Time and Space Fractional Schrdinger Equation with Fractional Factor
    相培
    郭永新
    傅景礼
    Communications in Theoretical Physics, 2019, 71 (01) : 16 - 26
  • [34] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [35] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [36] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [37] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [38] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [39] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559
  • [40] Perturbations of the Defocusing Nonlinear Schrödinger Equation
    B. Grébert
    T. Kappeler
    Milan Journal of Mathematics, 2003, 71 (1) : 141 - 174