On strong orthogonality and strictly convex normed linear spaces

被引:0
|
作者
Kallol Paul
Debmalya Sain
Kanhaiya Jha
机构
[1] Jadavpur University,Department of Mathematics
[2] Kathmandu University,Department of Mathematical Sciences, School of Science
关键词
orthogonality; strict convexity; extreme point;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notion of a strongly orthogonal set relative to an element in the sense of Birkhoff-James in a normed linear space to find a necessary and sufficient condition for an element x of the unit sphere SX to be an exposed point of the unit ball BX. We then prove that a normed linear space is strictly convex iff for each element x of the unit sphere, there exists a bounded linear operator A on X which attains its norm only at the points of the form λx with λ∈SK.
引用
收藏
相关论文
共 50 条
  • [11] ON STRICTLY CONVEX AND STRICTLY 2-CONVEX 2-NORMED SPACES
    LIN, CS
    [J]. MATHEMATISCHE NACHRICHTEN, 1990, 149 : 149 - 154
  • [12] CHARACTERIZATION OF STRICTLY CONVEX LINEAR 2-NORMED SPACES - PRELIMINARY REPORT
    DIMINNIE, CR
    WHITE, AG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A7 - A7
  • [13] REMARKS ON STRICTLY CONVEX AND STRICTLY 2-CONVEX 2-NORMED SPACES
    DIMINNIE, C
    GAHLER, S
    WHITE, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1979, 88 : 363 - 372
  • [14] Strictly Convex Space: Strong Orthogonality and Conjugate Diameters
    Sain, Debmalya
    Paul, Kallol
    Jha, Kanhaiya
    [J]. JOURNAL OF CONVEX ANALYSIS, 2015, 22 (04) : 1215 - 1225
  • [15] On Wigner's theorem in strictly convex normed spaces
    Ilisevic, Dijana
    Turnsek, Aleksej
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2020, 97 (3-4): : 393 - 401
  • [16] On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces
    Ji, Donghai
    Li, Jingying
    Wu, Senlin
    [J]. RESULTS IN MATHEMATICS, 2011, 59 (1-2) : 157 - 162
  • [17] On the Uniqueness of Isosceles Orthogonality in Normed Linear Spaces
    Donghai Ji
    Jingying Li
    Senlin Wu
    [J]. Results in Mathematics, 2011, 59 : 157 - 162
  • [18] Strong CHIP for infinite systems of convex sets in normed linear spaces
    Hu, Hui
    Wang, Qing
    [J]. OPTIMIZATION, 2010, 59 (02) : 235 - 251
  • [19] FULLY CONVEX NORMED LINEAR SPACES
    FAN, K
    GLICKSBERG, I
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1955, 41 (11) : 947 - 953
  • [20] ORTHOGONALITY IN NORMED SPACES
    PARTINGTON, JR
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 33 (03) : 449 - 455