Spatial patterns for reaction-diffusion systems with conditions described by inclusions

被引:0
|
作者
Eisner J. [1 ]
Kučera M. [1 ]
机构
[1] Mathematical Institute, Acad. of Sci. of the Czech Republic, 11567 Praha 1
关键词
Bifurcation; Inclusions; Reaction-diffusion systems; Spatial patterns; Stationary solutions; Variational inequalities;
D O I
10.1023/A:1022203129542
中图分类号
学科分类号
摘要
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
引用
收藏
页码:421 / 449
页数:28
相关论文
共 50 条
  • [41] conditions for Turing and wave instabilities in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan R. R.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (03)
  • [42] Abstract reaction-diffusion systems with nonlocal initial conditions
    Burlica, Monica-Dana
    Rosu, Daniela
    Vrabie, Ioan I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 107 - 119
  • [43] BIFURCATION POINTS OF REACTION-DIFFUSION SYSTEMS WITH UNILATERAL CONDITIONS
    DRABEK, P
    KUCERA, M
    MIKOVA, M
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1985, 35 (04) : 639 - 660
  • [44] On the existence of patterns in reaction-diffusion problems with Dirichlet boundary conditions
    Sonego, Maicon
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2024, (30)
  • [45] Effects of square spatial periodic forcing on oscillatory hexagon patterns in coupled reaction-diffusion systems
    Fan, Weili
    Ma, Fengna
    Tong, Yuan
    Liu, Qian
    Liu, Ruoqi
    He, Yafeng
    Liu, Fucheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (38) : 26023 - 26031
  • [46] Global Bifurcation for a Reaction-Diffusion System with Inclusions
    Eisner, Jan
    Kucera, Milan
    Vaeth, Martin
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2009, 28 (04): : 373 - 409
  • [47] Spatial distribution of microalgae in marine systems: A reaction-diffusion model
    Upadhyay, Ranjit Kumar
    Kumari, Sarita
    Kumar, Pramod
    Rai, Vikas
    ECOLOGICAL COMPLEXITY, 2019, 39
  • [48] Kinetic theory for spatial correlation in nonequilibrium reaction-diffusion systems
    Wakou, J
    Kitahara, K
    PHYSICA A, 2000, 281 (1-4): : 318 - 322
  • [49] Kinetic theory for spatial correlation in nonequilibrium reaction-diffusion systems
    Wakou, J.
    Kitahara, K.
    1600, Elsevier Science Publishers B.V., Amsterdam, Netherlands (281):
  • [50] Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity
    Zelik, SV
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (05) : 584 - 637